Electrostatically-driven fast association and perdeuteration allow detection of transferred cross-relaxation for G protein-coupled receptor ligands with equilibrium dissociation constants in the high-to-low nanomolar range

Abstract

The mechanism of signal transduction mediated by G protein-coupled receptors is a subject of intense research in pharmacological and structural biology. Ligand association to the receptor constitutes a critical event in the activation process. Solution-state NMR can be amenable to high-resolution structure determination of agonist molecules in their receptor-bound state by detecting dipolar interactions in a transferred mode, even with equilibrium dissociation constants below the micromolar range. This is possible in the case of an inherent ultra-fast diffusive association of charged ligands onto a highly charged extracellular surface, and by slowing down the 1H–1H cross-relaxation by perdeuterating the receptor. Here, we demonstrate this for two fatty acid molecules in interaction with the leukotriene BLT2 receptor, for which both ligands display a submicromolar affinity.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Balaram P, Bothner-By AA, Dadok J (1972) Negative nuclear Overhauser effects as probes of macromolecular structure. J Am Chem Soc 94:4015–4017

    Article  Google Scholar 

  2. Bockaert J, Pin JP (1999) Molecular tinkering of G protein-coupled receptors: an evolutionary success. EMBO J 18:1723–1729

    Article  Google Scholar 

  3. Borgeat P, Hamberg M, Samuelsson B (1976) Transformation of arachidonic acid and homo-gamma-linolenic acid by rabbit polymorphonuclear leukocytes. Monohydroxy acids from novel lipoxygenases. J Biol Chem 251:7816–7820

    Google Scholar 

  4. Campbell P, Sykes BD (1993) The two-dimensional transferred nuclear Overhauser effect: theory and practice. Annu Rev Biophys Biomol Struct 22:99–122

    Article  Google Scholar 

  5. Catoire LJ, Damian M, Giusti F, Martin A, van Heijenoort C, Popot JL, Guittet E, Banères JL (2010) Structure of a GPCR ligand in its receptor-bound state: leukotriene B4 adopts a highly constrained conformation when associated to human BLT2. J Am Chem Soc 132:9049–9057

    Article  Google Scholar 

  6. Cherezov V, Rosenbaum DM, Hanson MA et al (2007) High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science 318:1258–1265

    ADS  Article  Google Scholar 

  7. Clore GM, Gronenborn AM (1982) Theory and applications of the transferred nuclear Overhauser effect to the study of the conformations of small ligands bound to proteins. J Magn Res 48:402–417

    Google Scholar 

  8. Clore GM, Gronenborn AM (1983) Theory of the time dependent transferred nuclear Overhauser effect: applications to structural analysis of ligand–protein complexes in solution. J Magn Res 53:423–442

    Google Scholar 

  9. Dahmane T, Damian M, Mary S, Popot JL, Banères JL (2009) Amphipol-assisted in vitro folding of G protein-coupled receptors. Biochemistry 48:6516–6521

    Article  Google Scholar 

  10. Gabdoulline RR, Wade RC (2002) Biomolecular diffusional association. Curr Opin Struct Biol 12:204–213

    Article  Google Scholar 

  11. Hamberg M, Svensson J, Samuelsson B (1974) Prostaglandin endoperoxides. A new concept concerning the mode of action and release of prostaglandins. Proc Natl Acad Sci USA 71:3824–3828

    Google Scholar 

  12. Hegener O, Prenner L, Runkel F, Baader SL, Kappler J, Häberlein H (2004) Dynamics of beta2-adrenergic receptor-ligand complexes on living cells. Biochemistry 43:6190–6199

    Article  Google Scholar 

  13. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38

    Article  Google Scholar 

  14. Iizuka Y, Okuno T, Saeki K et al (2010) Protective role of the leukotriene B4 receptor BLT2 in murine inflammatory colitis. FASEB J 24:4678–4690

    Article  Google Scholar 

  15. Inooka H, Ohtaki T, Kitahara O, Ikegami T, Endo S, Kitada C, Ogi K, Onda H, Fujino M, Shirakawa M (2001) Conformation of a peptide ligand bound to its G-protein coupled receptor. Nat Struct Biol 8:161–165

    Article  Google Scholar 

  16. Kofuku Y, Yoshiura C, Ueda T et al (2009) Structural basis of the interaction between chemokine stromal cell-derived factor-1/CXCL12 and its G-protein-coupled receptor CXCR4. J Biol Chem 284:35240–35250

    Article  Google Scholar 

  17. Krieger E, Koraimann G, Vriend G (2002) Increasing the precision of comparative models with YASARA NOVA—a self-parameterizing force field. Proteins 47:393–402

    Article  Google Scholar 

  18. Levitt M (2001) In spin dynamics. Wiley, Chichester, pp 490–493

    Google Scholar 

  19. Luca S, White JF, Sohal AK, Filippov DV, van Boom JH, Grisshammer R, Baldus M (2003) The conformation of neurotensin bound to its G protein-coupled receptor. Proc Natl Acad Sci USA 100:10706–10711

    ADS  Article  Google Scholar 

  20. Markus MA, Dayie KT, Matsudaira P, Wagner G (1994) Effect of deuteration on the amide proton relaxation rates in proteins. Heteronuclear NMR experiments on villin 14T. J Magn Reson B105:192–195

    Google Scholar 

  21. Ni F (1992) Complete relaxation matrix analysis of transferred nuclear Overhauser effects. J Magn Reson 96:651–656

    Google Scholar 

  22. Nygaard R, Frimurer TM, Holst B, Rosenkilde MM, Schwartz TW (2009) Ligand binding and micro-switches in 7TM receptor structures. Trends Pharmacol Sci 30:249–259

    Article  Google Scholar 

  23. Okuno T, Iizuka Y, Okazaki H et al (2008) 12(S)-Hydroxyheptadeca-5Z, 8E, 10E-trienoic acid is a natural ligand for leukotriene B4 receptor 2. J Exp Med 205:759–766

    Article  Google Scholar 

  24. Popot JL (2010) Amphipols, nanodiscs, and fluorinated surfactants: three nonconventional approaches to studying membrane proteins in aqueous solutions. Annu Rev Biochem 79:737–775

    Article  Google Scholar 

  25. Popot JL, Althoff T, Bagnard D et al (2011) Amphipols from A to Z. Ann Rev Biophys 40:379–408

    Article  Google Scholar 

  26. Rasmussen SG, Choi HJ, Fung JJ et al (2011) Structure of a nanobody—stabilized active state of the β(2) adrenoceptor. Nature 469:175–180

    ADS  Article  Google Scholar 

  27. Rosenbaum DM, Rasmussen SG, Kobilka BK (2009) The structure and function of G-protein-coupled receptors. Nature 459:356–363

    ADS  Article  Google Scholar 

  28. Rosenbaum DM, Zhang C, Lyons JA et al (2011) Structure and function of an irreversible agonist-β(2) adrenoceptor complex. Nature 469:236–240

    ADS  Article  Google Scholar 

  29. Sabirsh A, Wetterholm A, Bristulf J, Leffler H, Haeggström JZ, Owman C (2005) Fluorescent leukotriene B4: potential applications. J Lipid Res 46:1339–1346

    Article  Google Scholar 

  30. Schreiber G, Fersht AR (1996) Rapid, electrostatically assisted association of proteins. Nat Struct Biol 3:427–431

    Article  Google Scholar 

  31. Sykes DA, Dowling MR, Charlton S (2009) Exploring the mechanism of agonist efficacy: a relationship between efficacy and agonist dissociation rate at the muscarinic M3 receptor. J Mol Pharmacol 76:543–551

    Article  Google Scholar 

  32. Tribet C, Audebert R, Popot JL (1996) Amphipols: polymers that keep membrane proteins soluble in aqueous solutions. Proc Natl Acad Sci USA 93:15047–15050

    ADS  Article  Google Scholar 

  33. Williamson MP (2006) In: Craik D (eds) Modern magnetic resonance. Kluwer, The Netherlands, pp 1339–1344

  34. Yokomizo T, Kato K, Terawaki K, Izumi T, Shimizu T (2000) A second leukotriene B(4) receptor, BLT2. A new therapeutic target in inflammation and immunological disorders. J Exp Med 192:421–432

    Article  Google Scholar 

Download references

Acknowledgments

We are extremely grateful to Fabrice Giusti (UMR 7099) for the gift of deuterated surfactant amphipols. We thank Monica Zoppè (Scientific Visualization Unit, Inst. of Clinical Physiol., Pisa, Italy) for access to innovative visualization methods to illustrate the strong electrostatic potential gradient of BLT2. Particular thanks are due to Jean-Luc Popot (UMR 7099) and Jacky Marie (UMR 5247) for helpful comments on this manuscript. This work was supported by the Centre National de la Recherche Scientifique (CNRS), Paris-7 University, and by grants from the E.U. (Specific Targeted Research Project LSHG-CT-2005-513770 IMPS Innovative tools for membrane protein structural proteomics) and from the French Ministry of Research (ANR-06-BLAN-0087 and ANR BLAN07-1_191475). L.J.C. is a 2009 recipient of Projets Exploratoires/ Premier Soutien (PEPS, Leukomotive project) from the CNRS.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Laurent J. Catoire.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM2 (WMV 32,6462 KB)

PDF (5417 KB)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Catoire, L.J., Damian, M., Baaden, M. et al. Electrostatically-driven fast association and perdeuteration allow detection of transferred cross-relaxation for G protein-coupled receptor ligands with equilibrium dissociation constants in the high-to-low nanomolar range. J Biomol NMR 50, 191–195 (2011). https://doi.org/10.1007/s10858-011-9523-3

Download citation

Keywords

  • Kinetics
  • Transferred NOE
  • G protein-coupled receptor
  • Signal transduction
  • Structural biology