Advertisement

Journal of Biomolecular NMR

, Volume 44, Issue 3, pp 157–166 | Cite as

Two-point anchoring of a lanthanide-binding peptide to a target protein enhances the paramagnetic anisotropic effect

  • Tomohide Saio
  • Kenji Ogura
  • Masashi Yokochi
  • Yoshihiro Kobashigawa
  • Fuyuhiko Inagaki
Article

Abstract

Paramagnetic lanthanide ions fixed in a protein frame induce several paramagnetic effects such as pseudo-contact shifts and residual dipolar couplings. These effects provide long-range distance and angular information for proteins and, therefore, are valuable in protein structural analysis. However, until recently this approach had been restricted to metal-binding proteins, but now it has become applicable to non-metalloproteins through the use of a lanthanide-binding tag. Here we report a lanthanide-binding peptide tag anchored via two points to the target proteins. Compared to conventional single-point attached tags, the two-point linked tag provides two to threefold stronger anisotropic effects. Though there is slight residual mobility of the lanthanide-binding tag, the present tag provides a higher anisotropic paramagnetic effect.

Keywords

Lanthanide binding peptide tag Two-point anchoring Paramagnetic NMR Pseudo-contact shift Residual dipolar coupling 

Supplementary material

10858_2009_9325_MOESM1_ESM.doc (2 mb)
(DOC 2054 kb)

References

  1. Allegrozzi M, Bertini I, Janik MBL, Lee YM, Liu G, Luchinat C (2000) Lanthanide-induced pseudocontact shifts for solution structure refinements of macromolecules in shells up to 40 Å from the metal ion. J Am Chem Soc 122:4154–4161CrossRefGoogle Scholar
  2. Banci L, Bertini I, Huber JG, Luchinat C, Rosato A (1998) Partial orientation of oxidized and reduced cytochrome b5 at high magnetic fields: magnetic susceptibility anisotropy contributions and consequences for protein solution structure determination. J Am Chem Soc 120:12903–12909CrossRefGoogle Scholar
  3. Barbieri R, Bertini I, Cavallaro G, Lee YM, Luchinat C, Rosato A (2002) Paramagnetically induced residual dipolar couplings for solution structure determination of lanthanide binding proteins. J Am Chem Soc 124:5581–5587CrossRefGoogle Scholar
  4. Battiste JL, Wagner G (2000) Utilization of site-directed spin labeling and high-resolution heteronuclear nuclear magnetic resonance for global fold determination of large proteins with limited nuclear overhauser effect data. Biochemistry 39:5355–5365CrossRefGoogle Scholar
  5. Bertini I, Janik MB, Lee YM, Luchinat C, Rosato A (2001a) Magnetic susceptibility tensor anisotropies for a lanthanide ion series in a fixed protein matrix. J Am Chem Soc 123:4181–4188CrossRefGoogle Scholar
  6. Bertini I, Janik MB, Liu G, Luchinat C, Rosato A (2001b) Solution structure calculations through self-orientation in a magnetic field of a cerium(III) substituted calcium-binding protein. J Magn Reson 148:23–30CrossRefADSGoogle Scholar
  7. Bertini I, Del Bianco C, Gelis I, Katsaros N, Luchinat C, Parigi G, Peana M, Provenzani A, Zoroddu MA (2004) Experimentally exploring the conformational space sampled by domain reorientation in calmodulin. Proc Natl Acad Sci USA 101:6841–6846CrossRefADSGoogle Scholar
  8. Bertini I, Luchinat C, Parigi G, Pierattelli R (2005) NMR spectroscopy of paramagnetic metalloproteins. Chembiochem 6:1536–1549CrossRefGoogle Scholar
  9. Bertini I, Gupta YK, Luchinat C, Parigi G, Peana M, Sgheri L, Yuan J (2007) Paramagnetism-based NMR restraints provide maximum allowed probabilities for the different conformations of partially independent protein domains. J Am Chem Soc 129:12786–12794CrossRefGoogle Scholar
  10. Bertini I, Luchinat C, Parigi G, Pierattelli R (2008) Perspectives in paramagnetic NMR of metalloproteins. Dalton Trans 29:3782–3790CrossRefGoogle Scholar
  11. Cornilescu G, Delaglio F, Bax A (1999) Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J Biomol NMR 13:289–302CrossRefGoogle Scholar
  12. DeLano WL (2002) The PyMOL molecular graphics system. Palo Alto, CAGoogle Scholar
  13. Déméné H, Tsan P, Gans P, Marion D (2000) NMR determination of the magnetic susceptibility anisotropy of cytochrome c’ of rhodobacter capsulatus by 1JHN dipolar coupling constants measurement: characterization of its monomeric state in solution. J Phys Chem B 104:2559–2569CrossRefGoogle Scholar
  14. Dosset P, Hus JC, Marion D, Blackledge M (2001) A novel interactive tool for rigid-body modeling of multi-domain macromolecules using residual dipolar couplings. J Biomol NMR 20:223–231CrossRefGoogle Scholar
  15. Dvoretsky A, Gaponenko V, Rosevear PR (2002) Derivation of structural restraints using a thiol-reactive chelator. FEBS Lett 528:189–192CrossRefGoogle Scholar
  16. Gaponenko V, Dvoretsky A, Walsby C, Hoffman BM, Rosevear PR (2000) Calculation of z-coordinates and orientational restraints using a metal binding tag. Biochemistry 39:15217–15224CrossRefGoogle Scholar
  17. Gaponenko V, Altieri AS, Li J, Byrd RA (2002) Breaking symmetry in the structure determination of (large) symmetric protein dimers. J Biomol NMR 24:143–148CrossRefGoogle Scholar
  18. Gaponenko V, Sarma SP, Altieri AS, Horita DA, Li J, Byrd RA (2004) Improving the accuracy of NMR structures of large proteins using pseudocontact shifts as long-range restraints. J Biomol NMR 28:205–212CrossRefGoogle Scholar
  19. Gronenborn AM, Filpula DR, Essig NZ, Achari A, Whitlow M, Wingfield PT, Clore GM (1991) A novel, highly stable fold of the immunoglobulin binding domain of streptococcal protein G. Science 254:581–582CrossRefGoogle Scholar
  20. Haberz P, Rodriguez-Castañeda F, Junker J, Becker S, Leonov A, Griesinger C (2006) Two new chiral EDTA-based metal chelates for weak alignment of proteins in solution. Org Lett 8:1275–1278CrossRefGoogle Scholar
  21. Herrmann T, Güntert P, Wüthrich K (2002) Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA. J Mol Biol 319:209–227CrossRefGoogle Scholar
  22. Hus JC, Marion D, Blackledge M (2000) De novo determination of protein structure by NMR using orientational and long-range order restraints. J Mol Biol 298:927–936CrossRefGoogle Scholar
  23. Ikegami T, Verdier L, Sakhaii P, Grimme S, Pescatore B, Saxena K, Fiebig KM, Griesinger C (2004) Novel techniques for weak alignment of proteins in solution using chemical tags coordinating lanthanide ions. J Biomol NMR 29:339–349CrossRefGoogle Scholar
  24. Keizers PH, Desreux JF, Overhand M, Ubbink M (2007) Increased paramagnetic effect of a lanthanide protein probe by two-point attachment. J Am Chem Soc 129:9292–9293CrossRefGoogle Scholar
  25. Keizers PH, Saragliadis A, Hiruma Y, Overhand M, Ubbink M (2008) Design, synthesis, and evaluation of a lanthanide chelating protein probe: CLaNP-5 yields predictable paramagnetic effects independent of environment. J Am Chem Soc 130:14802–14812CrossRefGoogle Scholar
  26. Koradi R, Billeter M, Wüthrich K (1996) MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graph 14:51–55CrossRefGoogle Scholar
  27. Leonov A, Voigt B, Rodriguez-Castañeda F, Sakhaii P, Griesinger C (2005) Convenient synthesis of multifunctional EDTA-based chiral metal chelates substituted with an S-mesylcysteine. Chem Eur J 11:3342–3348CrossRefGoogle Scholar
  28. Ma C, Opella SJ (2000) Lanthanide ions bind specifically to an added “EF-hand” and orient a membrane protein in micelles for solution NMR spectroscopy. J Magn Reson 146:381–384CrossRefADSGoogle Scholar
  29. Martin LJ, Hähnke MJ, Nitz M, Wöhnert J, Silvaggi NR, Allen KN, Schwalbe H, Imperiali B (2007) Double-lanthanide-binding tags: design, photophysical properties, and NMR applications. J Am Chem Soc 129:7106–7113CrossRefGoogle Scholar
  30. Nitz M, Franz KJ, Maglathlin RL, Imperiali B (2003) A powerful combinatorial screen to identify high-affinity terbium(III)-binding peptides. Chembiochem 4:272–276CrossRefGoogle Scholar
  31. Nitz M, Sherawat M, Franz KJ, Peisach E, Allen KN, Imperiali B (2004) Structural origin of the high affinity of a chemically evolved lanthanide-binding peptide. Angew Chem Int Ed Engl 12:3682–3685CrossRefGoogle Scholar
  32. Otting G (2008) Prospects for lanthanides in structural biology by NMR. J Biomol NMR 2008(4):1–9CrossRefGoogle Scholar
  33. Pintacuda G, Moshref A, Leonchiks A, Sharipo A, Otting G (2004) Site-specific labelling with a metal chelator for protein-structure refinement. J Biomol NMR 29:351–361CrossRefGoogle Scholar
  34. Pintacuda G, Park AY, Keniry MA, Dixon NE, Otting G (2006) Lanthanide labeling offers fast NMR approach to 3D structure determinations of protein-protein complexes. J Am Chem Soc 2006(128):3696–3702CrossRefGoogle Scholar
  35. Pintacuda G, John M, Su XC, Otting G (2007) NMR structure of protein-ligand complexes by lanthanide labeling. Acc Chem Res 40:206–212CrossRefGoogle Scholar
  36. Prudêncio M, Rohovec J, Peters JA, Tocheva E, Boulanger MJ, Murphy ME, Hupkes HJ, Kosters W, Impagliazzo A, Ubbink M (2004) A caged lanthanide complex as a paramagnetic shift agent for protein NMR. Chemistry 10:3252–3260CrossRefGoogle Scholar
  37. Rodriguez-Castañeda F, Haberz P, Leonov A, Griesinger C (2006) Paramagnetic tagging of diamagnetic proteins for solution NMR. Magn Reson Chem 44:S10–S16CrossRefGoogle Scholar
  38. Rumpel S, Becker S, Zweckstetter M (2007) High-resolution structure determination of the CylR2 homodimer using paramagnetic relaxation enhancement and structure-based prediction of molecular alignment. J Biomol NMR 40:1–13CrossRefGoogle Scholar
  39. Saio T, Kumeta H, Ogura K, Yokochi M, Asayama M, Katoh S, Katoh E, Teshima K, Inagaki F (2007) The cooperative role of OsCnfU-1A domain I and domain II in the iron sulphur cluster transfer process as revealed by NMR. J Biochem 142:113–121CrossRefGoogle Scholar
  40. Schmitz C, John M, Park AY, Dixon NE, Otting G, Pintacuda G, Huber T (2006) Efficient chi-tensor determination and NH assignment of paramagnetic proteins. J Biomol NMR 35:79–87CrossRefGoogle Scholar
  41. Schmitz C, Stanton-Cook MJ, Su XC, Otting G, Huber T (2008) Numbat: an interactive software tool for fitting deltachi-tensors to molecular coordinates using pseudocontact shifts. J Biomol NMR 41:179–189CrossRefGoogle Scholar
  42. Su XC, Huber T, Dixon NE, Otting G (2006) Site-Specific Labelling of Proteins with a Rigid Lanthanide-Binding Tag. ChemBioChem 7:1599–1604CrossRefGoogle Scholar
  43. Su XC, McAndrew K, Huber T, Otting G (2008a) Lanthanide-binding peptides for NMR measurements of residual dipolar couplings and paramagnetic effects from multiple angles. J Am Chem Soc 130:1681–1687CrossRefGoogle Scholar
  44. Su XC, Man B, Beeren S, Liang H, Simonsen S, Schmitz C, Huber T, Messerle BA, Otting G (2008b) A dipicolinic acid tag for rigid lanthanide tagging of proteins and paramagnetic NMR spectroscopy. J Am Chem Soc 130:10486–10487CrossRefGoogle Scholar
  45. Tang C, Schwieters CD, Clore GM (2006) Open-to-closed transition in apo maltose-binding protein observed by paramagnetic NMR. Nature 449:1078–1082CrossRefADSGoogle Scholar
  46. Vlasie MD, Comuzzi C, van den Nieuwendijk AM, Prudêncio M, Overhand M, Ubbink M (2007) Long-range-distance NMR effects in a protein labeled with a lanthanide-DOTA chelate. Chem Eur J 13:1715–1723CrossRefGoogle Scholar
  47. Vlasie MD, Fernández-Busnadiego R, Prudêncio M, Ubbink M (2008) Conformation of pseudoazurin in the 152 kDa electron transfer complex with nitrite reductase determined by paramagnetic NMR. J Mol Biol 375:1405–1415CrossRefGoogle Scholar
  48. Wöhnert J, Franz KJ, Nitz M, Imperiali B, Schwalbe H (2003) Protein alignment by a coexpressed lanthanide-binding tag for the measurement of residual dipolar couplings. J Am Chem Soc 125:13338–13339CrossRefGoogle Scholar
  49. Zhuang T, Lee HS, Imperiali B, Prestegard JH (2008) Structure determination of a galectin-3-carbohydrate complex using paramagnetism-based NMR constraints. Protein Sci 17:1220–1231CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Tomohide Saio
    • 1
    • 2
  • Kenji Ogura
    • 2
  • Masashi Yokochi
    • 2
  • Yoshihiro Kobashigawa
    • 2
  • Fuyuhiko Inagaki
    • 2
  1. 1.Graduate School of Life ScienceHokkaido UniversitySapporoJapan
  2. 2.Laboratory of Structural Biology, Graduate School of Pharmaceutical SciencesHokkaido UniversitySapporoJapan

Personalised recommendations