Journal of Biomolecular NMR

, Volume 41, Issue 1, pp 9–15 | Cite as

Resolution enhancement by homonuclear J-decoupling: application to three-dimensional solid-state magic angle spinning NMR spectroscopy

  • Lichi Shi
  • Xiaohu Peng
  • Mumdooh A. M. Ahmed
  • Dale Edwards
  • Leonid S. Brown
  • Vladimir Ladizhansky


We describe a simple protocol to achieve homonuclear J-decoupling in the indirect dimensions of multidimensional experiments, and to enhance spectral resolution of the backbone Cα carbons in the 3D NCACX experiment. In the proposed protocol, the refocusing of the Cα–CO homonuclear J-couplings is achieved by applying an off-resonance selective π pulse to the CO spectral region in the middle of Cα chemical shift evolution. As is commonly used in solution NMR, a compensatory echo period is used to refocus the unwanted chemical shift evolution of Cα spins, which takes place during the off-resonance selective pulse. The experiments were carried out on the β1 immunoglobulin binding domain of protein G (GB1). In GB1, such implementation results in significantly reduced line widths, and leads to an overall sensitivity enhancement.


Solid-state NMR Magic angle spinning Uniformly 13C,15N labeled proteins Assignments Homonuclear decoupling Resolution enhancement 



Solid-state NMR


Magic angle spinning


β1 immunoglobulin binding domain of protein G


Time proportional phase increment


Small phase incremental alternation with 64 steps


2,2-Dimethyl-2-silapentane-5-sulfonic acid



This research was supported by the University of Guelph (start-up funds to V.L.), the Natural Sciences and Engineering Research Council of Canada (DG250202 to L.S.B. and Grants RG298480-04 to V.L.), the Canada Foundation for Innovation, and the Ontario Innovation Trust. V.L. holds Canada Research Chair in Biophysics, and is a recipient of an Early Researcher Award from the Ontario Ministry of Research and Innovation. L.S. is a recipient of the Ontario Graduate Scholarship. M.A. is a recipient of a Doctoral Studentship from the Ministry of Higher Education and Scientific Research of Egypt.

Supplementary material

10858_2008_9233_MOESM1_ESM.doc (681 kb)
(DOC 681 kb)


  1. Andrew ER, Bradbury A, Eades RG, Wynn VT (1963) Nuclear cross relaxation induced by specimen rotation. Phys Lett 4:99–100CrossRefADSGoogle Scholar
  2. Baldus M, Petkova AT, Herzfeld J, Griffin RG (1998) Cross polarization in the tilted frame: assignment and spectral simplification in heteronuclear spin systems. Mol Phys 95:1197–1207CrossRefADSGoogle Scholar
  3. Bruschweiler R, Griesinger C, Sorensen OW, Ernst RR (1988) Combined use of hard and soft pulses for omega-1 decoupling in two-dimensional NMR-spectroscopy. J Magn Reson 78:178–185Google Scholar
  4. Chen L, Kaiser JM, Polenova T, Yang J, Rienstra CM, Mueller LJ (2007) Backbone assignments in solid-state proteins using J-based 3D heteronuclear correlation spectroscopy. J Am Chem Soc 129:10650–10651CrossRefGoogle Scholar
  5. Chevelkov V, Chen ZJ, Bermel W, Reif B (2005) Resolution enhancement in MAS solid-state NMR by application of C-13 homonuclear scalar decoupling during acquisition. J Magn Reson 172:56–62CrossRefADSGoogle Scholar
  6. Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe - a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293CrossRefGoogle Scholar
  7. Duma L Hediger S, Brutscher B, Bockmann A, Emsley L (2003a) Resolution enhancement in multidimensional solid-state NMR spectroscopy of proteins using spin-state selection. J Am Chem Soc 125:11816–11817CrossRefGoogle Scholar
  8. Duma L, Hediger S, Lesage A, Emsley L (2003b) Spin-state selection in solid-state NMR. J Magn Reson 164:187–195CrossRefADSGoogle Scholar
  9. Duma L, Hediger S, Lesage A, Sakellariou D, Emsley L (2003c) Carbon-13 lineshapes in solid-state NMR of labeled compounds. Effects of coherent CSA-dipolar cross-correlation. J Magn Reson 162:90–101CrossRefADSGoogle Scholar
  10. Franks WT, Zhou DH, Wylie BJ, Money BG, Graesser DT, Frericks HL, Sahota G, Rienstra CM (2005) Magic-angle spinning solid-state NMR spectroscopy of the beta 1 immunoglobulin binding domain of protein G (GB1): N-15 and C-13 chemical shift assignments and conformational analysis. J Am Chem Soc 127:12291–12305CrossRefGoogle Scholar
  11. Fung BM, Khitrin AK, Ermolaev K (2000) An improved broadband decoupling sequence for liquid crystals and solids. J Magn Reson 142:97–101CrossRefADSGoogle Scholar
  12. Hiller M, Krabben L, Vinothkumar KR, Castellani F, van Rossum BJ, Kuhlbrandt W, Oschkinat H (2005) Solid-state magic-angle spinning NMR of outer-membrane protein G from Escherichia coli. Chembiochem 6:1679–1684CrossRefGoogle Scholar
  13. Hong M (1999) Resonance assignment of C-13/N-15 labeled solid proteins by two- and three-dimensional magic-angle-spinning NMR. J Biomol NMR 15:1–14CrossRefGoogle Scholar
  14. Igumenova TI, McDermott AE (2003) Improvement of resolution in solid state NMR spectra with J-decoupling: an analysis of lineshape contributions in uniformly C-13-enriched amino acids and proteins. J Magn Reson 164:270–285CrossRefADSGoogle Scholar
  15. Igumenova TI, McDermott AE (2005) Homo-nuclear C-13 J-decoupling in uniformly C-13-enriched solid proteins. J Magn Reson 175:11–20CrossRefADSGoogle Scholar
  16. Jaroniec CP, MacPhee CE, Astrof NS, Dobson CM, Griffin RG (2002) Molecular conformation of a peptide fragment of transthyretin in an amyloid fibril. Proc Natl Acad Sci USA 99:16748–16753CrossRefADSGoogle Scholar
  17. Keller R (2004) The computer aided resonance assignment tutorial, first ed. CANTINA Verlag GoldauGoogle Scholar
  18. Levitt MH, Raleigh DP, Creuzet F, Griffin RG (1990) Theory and simulations of homonuclear spin pair systems in rotating solids. J Chem Phys 92:6347–6364CrossRefADSGoogle Scholar
  19. Li Y, Wylie BJ, Rienstra CM (2006) Selective refocusing pulses in magic-angle spinning NMR: characterization and applications to multi-dimensional protein spectroscopy. J Magn Reson 179:206–216CrossRefADSGoogle Scholar
  20. Lorch M, Fahem S, Kaiser C, Weber I, Mason AJ, Bowie JU, Glaubitz C (2005) How to prepare membrane proteins for solid-state NMR: a case study on the α-helical integral membrane protein diacylglycerol kinase from E. coli. Chembiochem 6:1693–1700CrossRefGoogle Scholar
  21. Markley JL, Bax A, Arata Y, Hilbers CW, Kaptein R, Sykes BD, Wright PE, Wuthrich K (1998) Recommendations for the presentation of NMR structures of proteins and nucleic acids - IUPAC-IUBMB-IUPAB inter-union task group on the standardization of data bases of protein and nucleic acid structures determined by NMR spectroscopy. Eur J Biochem 256:1–15CrossRefGoogle Scholar
  22. Martin RW, Zilm KW (2003) Preparation of protein nanocrystals and their characterization by solid state NMR. J Magn Reson 165:162–174CrossRefADSGoogle Scholar
  23. Morcombe CR, Zilm KW (2003) Chemical shift referencing in MAS solid state NMR. J Magn Reson 162:479–486CrossRefADSGoogle Scholar
  24. Paravastu AK, Petkova AT, Tycko R (2006) Polymorphic fibril formation by residues 10-40 of the Alzheimer's beta-amyloid peptide. Biophys J 90:4618–4629CrossRefGoogle Scholar
  25. Pauli J, van Rossum B, Forster H, de Groot HJM, Oschkinat H (2000) Sample optimization and identification of signal patterns of amino acid side chains in 2D RFDR spectra of the alpha-spectrin SH3 domain. J Magn Reson 143:411–416CrossRefADSGoogle Scholar
  26. Pines A, Gibby MG, Waugh JS (1973) Proton-enhanced NMR of dilute spins in solids. J Chem Phys 59:569–590CrossRefADSGoogle Scholar
  27. Rienstra CM, Hohwy M, Hong M, Griffin RG (2000) 2D and 3D N-15-C-13-C-13 NMR chemical shift correlation spectroscopy of solids: assignment of MAS spectra of peptides. J Am Chem Soc 122:10979–10990CrossRefGoogle Scholar
  28. Schmidt HL, Sperling LJ, Gao YG, Wylie BJ, Boettcher JM, Wilson SR, Rienstra CM (2007) Crystal polymorphism of protein GB1 examined by solid-state NMR spectroscopy and X-ray diffraction. J Phys Chem B 111:14362–14369CrossRefGoogle Scholar
  29. Siemer AB, Ritter C, Ernst M, Riek R, Meier BH (2005) High-resolution solid-state NMR spectroscopy of the prion protein HET-s in its amyloid conformation. Angewandte Chemie-International Edition 44:2441–2444CrossRefGoogle Scholar
  30. Straus SK, Bremi T, Ernst RR (1996) Resolution enhancement by homonuclear J decoupling in solid-state MAS NMR. Chem Phys Lett 262:709–715CrossRefADSGoogle Scholar
  31. Straus SK, Bremi T, Ernst RR (1998) Experiments and strategies for the assignment of fully C-13/N-15-labelled polypeptides by solid state NMR. J Biomol NMR 12:39–50CrossRefGoogle Scholar
  32. Sun BQ, Rienstra CM, Costa PR, Williamson JR, Griffin RG (1997) 3D N-15-C-13-C-13 chemical shift correlation spectroscopy in rotating solids. J Am Chem Soc 119:8540–8546CrossRefGoogle Scholar
  33. Takegoshi K, Nakamura S, Terao T (2001) C-13-H-1 dipolar-assisted rotational resonance in magic-angle spinning NMR. Chem Phys Lett 344:631–637CrossRefADSGoogle Scholar
  34. Wylie BJ, Sperling LJ, Rienstra CM (2008) Isotropic chemical shifts in magic-angle spinning NMR spectra of proteins. Phys Chem Chem Phys 10:405–413CrossRefGoogle Scholar
  35. Zhong L, Bamm VV, Ahmed MA, Harauz G, Ladizhansky V (2007) Solid-state NMR spectroscopy of 18.5 kDa myelin basic protein reconstituted with lipid vesicles: spectroscopic characterisation and spectral assignments of solvent-exposed protein fragments. Biochim Biophys Acta 1768:3193–3205CrossRefGoogle Scholar
  36. Zhou DHH, Kloepper KD, Winter KA, Rienstra CM (2006) Band-selective C-13 homonuclear 3D spectroscopy for solid proteins at high field with rotor-synchronized soft pulses. J Biomol NMR 34:245–257CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Lichi Shi
    • 1
  • Xiaohu Peng
    • 1
  • Mumdooh A. M. Ahmed
    • 1
  • Dale Edwards
    • 1
  • Leonid S. Brown
    • 1
  • Vladimir Ladizhansky
    • 1
  1. 1.Department of Physics and Biophysics Interdepartmental GroupUniversity of GuelphGuelphCanada

Personalised recommendations