Journal of Biomolecular NMR

, Volume 40, Issue 1, pp 15–21 | Cite as

Characterisation of Schiff base and chromophore in green proteorhodopsin by solid-state NMR

  • Nicole Pfleger
  • Mark Lorch
  • Andreas C. Woerner
  • Sarika Shastri
  • Clemens Glaubitz


The proteorhodopsin family consists of hundreds of homologous retinal containing membrane proteins found in bacteria in the photic zone of the oceans. They are colour tuned to their environment and act as light-driven proton pumps with a potential energetic and regulatory function. Precise structural details are still unknown. Here, the green proteorhodopsin variant has been selected for a chemical shift analysis of retinal and Schiff base by solid-state NMR. Our data show that the chromophore exists in mainly all-trans configuration in the proteorhodopsin ground state. The optical absorption maximum together with retinal and Schiff base chemical shifts indicate a strong interaction network between chromophore and opsin.


Proteorhodopsin Solid-state NMR Schiff base Retinal 







Wild type


Protonated Schiff base


Dark adapted


Light adapted


Magic angle sample spinning



This work has been financially supported by SFB 472 (“Molecular Bioenergetics”). Cells and plasmids were kindly provided by E. Bamberg, Frankfurt and M. Engelhard, Dortmund. The 10,11-13C2 retinal was a generous gift of Marina Carravetta and Malcolm Levitt, Southampton. Ute Hellmich and Christoph Kaiser are acknowledged for helpful discussions.

Supplementary material


  1. Albeck A, Livnah N, Gottlieb H, Sheves M (1992) C-13 Nmr-studies of model compounds for bacteriorhodopsin––factors affecting the retinal chromophore chemical-shifts and absorption maximum. J Am Chem Soc 114:2400–2411CrossRefGoogle Scholar
  2. Beja O, Aravind L, Koonin EV, Suzuki MT, Hadd A, Nguyen LP, Jovanovich SB, Gates CM, Feldman RA, Spudich JL, Spudich EN, DeLong EF (2000) Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science 289:1902–1906CrossRefADSGoogle Scholar
  3. Bergo V, Amsden JJ, Spudich EN, Spudich JL, Rothschild KJ (2004) Structural changes in the photoactive site of proteorhodopsin during the primary photoreaction. Biochemistry 43:9075–9083CrossRefGoogle Scholar
  4. Bremser W, Paust J (1974) C-13 Nmr-spectrum of beta-carotene and charge-distribution in poly chain of apocarotinals. Org Magn Resonance 6:433–435CrossRefGoogle Scholar
  5. Creemers AFL, Klaassen CHW, Bovee-Geurts PHM, Kelle R, Kragl U, Raap J, de Grip WJ, Lugtenburg J, de Groot HJM (1999) Solid state 15N NMR evidence for a complex Schiff base counterion in the visual G-protein-coupled receptor rhodopsin. Biochemistry 38:7195–7199CrossRefGoogle Scholar
  6. de Groot HJM, Harbison GS, Herzfeld J, Griffin RG (1989) Nuclear magnetic-resonance study of the Schiff-base in bacteriorhodopsin––counterion effects on the N-15 shift anisotropy. Biochemistry 28:3346–3353CrossRefGoogle Scholar
  7. Dioumaev AK, Brown LS, Shih J, Spudich EN, Spudich JL, Lanyi JK (2002) Proton transfers in the photochemical reaction cycle of proteorhodopsin. Biochemistry 41:5348–5358CrossRefGoogle Scholar
  8. Dreuw A (2006) Quantum chemical methods for the investigation of photoinitiated processes in biological systems: theory and applications. Chemphyschem 7:2259–2274CrossRefGoogle Scholar
  9. Engelhard M, Hess B, Metz G, Kreutz W, Siebert F, Soppa J, Oesterhelt D (1990) High-resolution C-13-solid state Nmr of bacteriorhodopsin––assignment of specific aspartic acids and structural implications of single site mutations. Eur Biophys J 18:17–24CrossRefGoogle Scholar
  10. Feng X, Verdegem PJE, Eden M, Sandstrom D, Lee YK, Bovee-Geurts PHM, de Grip WJ, Lugtenburg J, de Groot HJM, Levitt MH (2000) Determination of a molecular torsional angle in the metarhodopsin-I photointermediate of rhodopsin by double-quantum solid-state NMR. J Biomol Nmr 16:1–8CrossRefGoogle Scholar
  11. Friedrich T, Geibel S, Kalmbach R, Chizhov I, Ataka K, Heberle J, Engelhard M, Bamberg E (2002) Proteorhodopsin is a light-driven proton pump with variable vectoriality. J Mol Biol 321:821–838CrossRefGoogle Scholar
  12. Fung BM, Khitrin AK, Ermolaev K (2000) An improved broadband decoupling sequence for liquid crystals and solids. J Magn Reson 142:97–101CrossRefADSGoogle Scholar
  13. Han M, Dedecker BS, Smith SO (1993) Localization of the retinal protonated Schiff-base counterion in rhodopsin. Biophys J 65:899–906Google Scholar
  14. Harbison GS, Herzfeld J, Griffin RG (1983) Solid-state N-15 nuclear magnetic-resonance study of the Schiff-base in bacteriorhodopsin. Biochemistry 22:1–5Google Scholar
  15. Harbison GS, Smith SO, Pardoen JA, Courtin JML, Lugtenburg J, Herzfeld J, Mathies RA, Griffin RG (1985) Solid-state C-13 Nmr detection of a perturbed 6-S-trans chromophore in bacteriorhodopsin. Biochemistry 24:6955–6962CrossRefGoogle Scholar
  16. Harbison GS, Smith SO, Pardoen JA, Mulder PPJ, Lugtenburg J, Herzfeld J, Mathies R, Griffin RG (1984) Solid-state C-13 Nmr-studies of retinal in bacteriorhodopsin. Biochemistry 23:2662–2667CrossRefGoogle Scholar
  17. Hatcher ME, Hu JGG, Belenky M, Verdegem P, Lugtenburg J, Griffin RG, Herzfeld J (2002) Control of the pump cycle in bacteriorhodopsin: mechanisms elucidated by solid-state NMR of the D85N mutant. Biophys J 82:1017–1029CrossRefGoogle Scholar
  18. Hohenfeld IP, Wegener AA, Engelhard M (1999) Purification of histidine tagged bacteriorhodopsin, pharaonis halorhodopsin and pharaonis sensory rhodopsin II functionally expressed in Escherichia coli. Febs Lett 442:198–202CrossRefGoogle Scholar
  19. Hu JG, Griffin RG, Herzfeld J (1994) Synergy in the spectral tuning of retinal pigments: complete accounting of the opsin shift in bacteriorhodopsin. Proc Natl Acad Sci USA 91:8880–8884CrossRefADSGoogle Scholar
  20. Hu JGG, Griffin RG, Herzfeld J (1997a) Interactions between the protonated Schiff base and its counterion in the photointermediates of bacteriorhodopsin. J Am Chem Soc 119:9495–9498CrossRefGoogle Scholar
  21. Hu JGG, Sun BQQ, Petkova AT, Griffin RG, Herzfeld J (1997b) The predischarge chromophore in bacteriorhodopsin: a N-15 solid-state NMR study of the L photointermediate. Biochemistry 36:9316–9322CrossRefGoogle Scholar
  22. Ikeda D, Furutani Y, Kandori H (2007) FTIR study of the retinal Schiff base and internal water molecules of proteorhodopsin. Biochemistry 46:5365–5373CrossRefGoogle Scholar
  23. Imasheva ES, Balashov SP, Wang JM, Dioumaev AK, Lanyi JK (2004) Selectivity of retinal photoisomerization in proteorhodopsin is controlled by aspartic acid 227. Biochemistry 43:1648–1655CrossRefGoogle Scholar
  24. Imasheva ES, Shimono K, Balashov SP, Wang JM, Zadok U, Sheves M, Kamo N, Lanyi JK (2005) Formation of a long-lived photoproduct with a deprotonated Schiff base in proteorhodopsin, and its enhancement by mutation of Asp227. Biochemistry 44:10828–10838CrossRefGoogle Scholar
  25. Kinsey RA, Kintanar A, Oldfield E (1981) Dynamics of amino-acid side-chains in membrane-proteins by high-field solid-state deuterium nuclear magnetic-resonance spectroscopy––phenylalanine, tyrosine, and tryptophan. J Biol Chem 256:9028–9036Google Scholar
  26. Kolbe M, Besir H, Essen LO, Oesterhelt D (2000) Structure of the light-driven chloride pump halorhodopsin at 1.8 A resolution. Science 288:1390–1396CrossRefADSGoogle Scholar
  27. Krebs RA, Dunmire D, Partha R, Braiman MS (2003) Resonance Raman characterization of proteorhodopsin’s chromophore environment. J Phys Chem B 107:7877–7883CrossRefGoogle Scholar
  28. Lanyi JK, Schobert B (2002) Crystallographic structure of the retinal and the protein after deprotonation of the Schiff base: the switch in the bacteriorhodopsin photocycle. J Mol Biol 321:727–737CrossRefGoogle Scholar
  29. Lee YK, Kurur ND, Helmle M, Johannessen OG, Nielsen NC, Levitt MH (1995) Efficient dipolar recoupling in the Nmr of rotating solids––a sevenfold symmetrical radiofrequency pulse sequence. Chem Phys Lett 242:304–309CrossRefADSGoogle Scholar
  30. Lenz MO, Huber R, Schmidt B, Gilch P, Kalmbach R, Engelhard M, Wachtveitl J (2006) First steps of retinal photoisomerization in proteorhodopsin. Biophys J 91:255–262CrossRefGoogle Scholar
  31. Lenz MO, Woerner AC, Glaubitz C, Wachtveitl J (2007) Photoisomerization in proteorhodopsin mutant D97N. Photochem Photobiol 83:226–231Google Scholar
  32. Luecke H, Lanyi JK (2003) Structural clues to the mechanism of ion pumping in bacteriorhodopsin. Adv Protein Chem 63:111–130Google Scholar
  33. Luecke H, Schobert B, Lanyi JK, Spudich EN, Spudich JL (2001) Crystal structure of sensory rhodopsin II at 2.4 angstroms: insights into color tuning and transducer interaction. Science 293:1499–1503CrossRefADSGoogle Scholar
  34. Luecke H, Schobert B, Richter HT, Cartailler JP, Lanyi JK (1999) Structure of bacteriorhodopsin at 1.55 A resolution. J Mol Biol 291:899–911CrossRefGoogle Scholar
  35. Mason AJ, Turner GJ, Glaubitz C (2005) Conformational heterogeneity of transmembrane residues after the Schiff base reprotonation of bacteriorhodopsin––N-15 CPMAS NMR of D85N/T170C membranes. Febs J 272:2152–2164CrossRefGoogle Scholar
  36. Muchmore DC, Mcintosh LP, Russell CB, Anderson DE, Dahlquist FW (1989) Expression and N-15 labeling of proteins for proton and N-15 nuclear-magnetic-resonance. Method Enzymol 177:44–73CrossRefGoogle Scholar
  37. Sabehi G, Loy A, Jung KH, Partha R, Spudich JL, Isaacson T, Hirschberg J, Wagner M, Beja O (2005) New insights into metabolic properties of marine bacteria encoding proteorhodopsins. Plos Biol 3:1409–1417Google Scholar
  38. Varo G, Brown LS, Lakatos M, Lanyi JK (2003) Characterization of the photochemical reaction cycle of proteorhodopsin. Biophys J 84:1202–1207Google Scholar
  39. Walter JM, Greenfield D, Bustamante C, Liphardt J (2007) Light-powering Escherichia coli with proteorhodopsin. Proc Natl Acad Sci USA 104:2408–2412CrossRefADSGoogle Scholar
  40. Wang WW, Sineshchekov OA, Spudich EN, Spudich JL (2003) Spectroscopic and photochemical characterization of a deep ocean proteorhodopsin. J Biol Chem 278:33985–33991CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Nicole Pfleger
    • 1
  • Mark Lorch
    • 1
    • 2
  • Andreas C. Woerner
    • 1
  • Sarika Shastri
    • 1
  • Clemens Glaubitz
    • 1
  1. 1.Institute for Biophysical Chemistry, Centre for Biomolecular Magnetic ResonanceJ. W. Goethe UniversityFrankfurt am MainGermany
  2. 2.Department of ChemistryUniversity of HullHullUK

Personalised recommendations