Skip to main content
Log in

J-Spectroscopy in the presence of residual dipolar couplings: determination of one-bond coupling constants and scalable resolution

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

The access to weak alignment media has fuelled the development of methods for efficiently and accurately measuring residual dipolar couplings (RDCs) in NMR-spectroscopy. Among the wealth of approaches for determining one-bond scalar and RDC constants only J-modulated and J-evolved techniques retain maximum resolution in the presence of differential relaxation. In this article, a number of J-evolved experiments are examined with respect to the achievable minimum linewidth in the J-dimension, using the peptide PA4 and the 80-amino-acid-protein Saposin C as model systems. With the JE-N-BIRDd,X-HSQC experiment, the average full-width at half height could be reduced to approximately 5 Hz for the protein, which allows the additional resolution of otherwise unresolved peaks by the active (J+D)-coupling. Since RDCs generally can be scaled by the choice of alignment medium and alignment strength, the technique introduced here provides an effective resort in cases when chemical shift differences alone are insufficient for discriminating signals. In favorable cases even secondary structure elements can be distinguished.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bax A (2003) Weak alignment offers new NMR opportunities to study protein structure and dynamics. Protein Science 12:1–16

    Article  Google Scholar 

  • Bax A, Tjandra N (1997) High-resolution heteronuclear NMR of human ubiquitin in an aqueous liquid crystalline medium. J Biomol NMR 10:289–292

    Article  Google Scholar 

  • Bendiak B (2002) Sensitive through-space dipolar correlations between nuclei of small organic molecules by partial alignment in a deuterated liquid solvent. J Am Chem Soc 124:14862–14863

    Article  Google Scholar 

  • Bruschweiler R, Zhang FL (2004) Covariance nuclear magnetic resonance spectroscopy. J Chem Phys 120:5253–5260

    Article  ADS  Google Scholar 

  • Brutscher B, Boisbouvier J, Pardi A, Marion D, Simorre JP (1998) Improved sensitivity and resolution in H-1-C-13 NMR experiments of RNA. J Am Chem Soc 120:11845–11851

    Article  Google Scholar 

  • de Alba E, Weiler S, Tjandra N (2003) Solution structure of human Saposin C: pH-dependent interaction with phospholipid vesicles. Biochemistry 42:14729–14740

    Article  Google Scholar 

  • Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRpipe – a multidimensional spectral processing system based on unix pipes. J Biomol NMR 6:277–293

    Article  Google Scholar 

  • Fehér K, Berger S, Kövér KE (2003) Accurate determination of small one-bond heteronuclear residual dipolar couplings by F1 coupled HSQC modified with a G-BIRDr module. J Magn Reson 163:340–346

    Article  ADS  Google Scholar 

  • Freedberg DI (2002) An alternative method for pucker determination in carbohydrates from residual dipolar couplings: A solution NMR study of the fructofuranosyl ring of sucrose. J Am Chem Soc 124:2358–2362

    Article  Google Scholar 

  • Freeman R, Kupce E (2003) New methods for fast multidimensional NMR. J Biomol NMR 27:101–113

    Article  Google Scholar 

  • Freudenberger JC, Knör S, Kobzar K, Heckmann D, Paululat T, Kessler H, Luy B (2005) Stretched poly(vinyl acetate) gels as NMR alignment media for the measurement of residual dipolar couplings in polar organic solvents. Angew Chem Int Ed 44:423–426

    Article  Google Scholar 

  • Freudenberger JC, Spiteller P, Bauer R, Kessler H, Luy B (2004) Stretched poly(dimethylsiloxane) gels as NMR alignment media for apolar and weakly polar organic solvents: An ideal tool for measuring RDCs at low molecular concentrations. J Am Chem Soc 126:14690–14691

    Article  Google Scholar 

  • Goddard TD, Kneller DG San Francisco, University of California

  • Haberz P, Farjon J, Griesinger C (2005) A DMSO-compatible orienting medium: Towards the investigation of the stereochemistry of natural products. Angew Chem Int Ed 44:427–429

    Article  Google Scholar 

  • Hansen MR, Mueller L, Pardi A (1998) Tunable alignment of macromolecules by filamentous phage yields dipolar coupling interactions. Nat Struct Biol 5:1065–1074

    Article  Google Scholar 

  • John M, Wendeler M, Heller M, Sandhoff K, Kessler H (2006) Characterization of human saposins by NMR spectroscopy. Biochemistry 45:5206–5216

    Article  Google Scholar 

  • Jung YS, Sharma M, Zweckstetter M (2004) Simultaneous assignment and structure determination of protein backbones by using NMR dipolar couplings. Angew Chem Int Ed 43:3479–3481

    Article  Google Scholar 

  • Jung YS, Zweckstetter M (2004a) Backbone assignment of proteins with known structure using residual dipolar couplings. J Biomol NMR 30:25–35

    Article  Google Scholar 

  • Jung YS, Zweckstetter M (2004b) Mars – robust automatic backbone assignment of proteins. J Biomol NMR 30:11–23

    Article  Google Scholar 

  • Kessler H (1982) Peptide conformations 19 Conformation and biological activity of cyclic peptides. Angewandte Chemie-International Edition in English 21:512–523

    Article  Google Scholar 

  • Kim S, Szyperski T (2003) GFT NMR, a new approach to rapidly obtain precise high-dimensional NMR spectral information. J Am Chem Soc 125:1385–1393

    Article  Google Scholar 

  • Klages J, Neubauer C, Coles M, Kessler H, Luy B (2005) Structure refinement of Cyclosporin A in chloroform by using RDCs measured in a stretched PDMS-gel. ChemBioChem 6:1672–1678

    Article  Google Scholar 

  • Kneller DG, Kuntz ID (1993) J Cell Biochem Suppl 17 C:254

    Google Scholar 

  • Kobzar K, Kessler H, Luy B (2005) Stretched gelatin gels as chiral alignment media for the discrimination of enantiomers by NMR spectroscopy. Angew Chem Int Ed 44:3145–3147

    Article  Google Scholar 

  • Koskela H, Kilpelainen I, Heikkinen S (2004) CAGEBIRD: improving the GBIRD filter with a CPMG sequence. J Magn Reson 170:121–126

    Article  ADS  Google Scholar 

  • Kövér KE, Batta G (2004) More line narrowing in TROSY by decoupling of long-range couplings: shift correlation and 1JNC' coupling constant measurements. J Magn Reson 170:184–190

    Article  ADS  Google Scholar 

  • Kövér KE, Forgó P (2004) J-modulated ADEQUATE (JM-ADEQUATE) experiment for accurate measurement of carbon-carbon coupling constants. J Magn Reson 166:47–52

    Article  ADS  Google Scholar 

  • Luy B, Barchi JJ, Marino JP (2001) S3E-E.COSY methods for the measurement of F-19 associated scalar and dipolar coupling constants. J Magn Reson 152:179–184

    Article  ADS  Google Scholar 

  • Luy B, Marino JP (2001a) Measurement and application of H-1-F-19 dipolar couplings in the structure determination of 2 '-fluorolabeled RNA. J Biomol NMR 20:39–47

    Article  Google Scholar 

  • Luy B, Marino JP (2001b) H-1-P-31 CPMG-correlated experiments for the assignment of nucleic acids. J Am Chem Soc 123:11306–11307

    Article  Google Scholar 

  • Luy B, Kobzar K, Kessler H (2004) An easy and scalable method for the partial alignment of organic molecules for measuring residual dipolar couplings. Angew Chem Int Ed 43:1092–1094

    Article  Google Scholar 

  • Luy B, Kobzar K, Knör S, Furrer J, Heckmann D, Kessler H (2005) Orientational properties of stretched polystyrene gels in organic solvents and the suppression of their residual H-1 NMR signals. J Am Chem Soc 127:6459–6465

    Article  Google Scholar 

  • Luy B, Marino JP (2003) JE-TROSY: combined J-and TROSY-spectroscopy for the measurement of one-bond couplings in macromolecules. J Magn Reson 163:92–98

    Article  ADS  Google Scholar 

  • Mandelshtam VA, Taylor HS, Shaka AJ (1998) Application of the filter diagonalization method to one-and two-dimensional NMR spectra. J Magn Reson 133:304–312

    Article  Google Scholar 

  • Martin-Pastor M, Bush CA (2001) Refined structure of a flexible heptasaccharide using H-1-C-13 and H-1-H-1 NMR residual dipolar couplings in concert with NOE and long range scalar coupling constants. J Biomol NMR 19:125–139

    Article  Google Scholar 

  • Meissner A, Duus JO, Sørensen OW (1997a) Integration of spin-state-selective excitation into 2D NMR correlation experiments with heteronuclear ZQ/2Q pi rotations for 1JXH-resolved E.COSY-type measurement of heteronuclear coupling constants in proteins. J Biomol NMR 10:89–94

    Article  Google Scholar 

  • Meissner A, Duus JO, Sørensen OW (1997b) Spin-state-selective excitation. Application for E.COSY-type measurement of JHH coupling constants. J Magn Reson 128:92–97

    Article  Google Scholar 

  • Mierke DF, Kurz M, Kessler H (1994) Peptide flexibility and calculations of an ensemble of molecules. J Am Chem Soc 116:1042–1049

    Article  Google Scholar 

  • Mori S, Abeygunawardana C, Johnson MO, Vanzijl PCM (1995) Improved sensitivity of HSQC spectra of exchanging protons at short interscan delays using a new fast HSQC (FHSQC) detection scheme that avoids water saturation. J Magn Reson B 108:94–98

    Article  Google Scholar 

  • Ottiger M, Delaglio F, Bax A (1998a) Measurement of J and dipolar couplings from simplified two-dimensional NMR spectra. J Magn Reson 131:373–378

    Article  Google Scholar 

  • Ottiger M, Delaglio F, Marquardt JL, Tjandra N, Bax A (1998b) Measurement of dipolar couplings for methylene and methyl sites in weakly oriented macromolecules and their use in structure determination. J Magn Reson 134:365–369

    Article  Google Scholar 

  • Permi P (2002) A spin-state-selective experiment for measuring heteronuclear one-bond and homonuclear two-bond couplings from an HSQC-type spectrum. J Biomol NMR 22:27–35

    Article  Google Scholar 

  • Pham TN, Liptaj T, Bromek K, Uhrín D (2002) Measurement of small one-bond proton-carbon residual dipolar coupling constants in partially oriented C-13 natural abundance oligosaccharide samples: Analysis of heteronuclear 1JCH-modulated spectra with the BIRD inversion pulse. J Magn Reson 157:200–209

    Article  ADS  Google Scholar 

  • Piotto M, Saudek V, Sklenar V (1992) Gradient-tailored excitation for single-quantum NMR-spectroscopy of aqueous solutions. J Biomol NMR 2:661–665

    Article  Google Scholar 

  • Prestegard JH (1998) New techniques in structural NMR – anisotropic interactions. Nat Struct Biol 5:517–522

    Article  Google Scholar 

  • Shaka AJ, Barker PB, Freeman R (1985) Computer-optimized decoupling scheme for wideband applications and low-level operation. J Magn Reson 64:547–552

    Google Scholar 

  • Simon B, Sattler M (2002) De Novo structure determination from residual dipolar couplings by NMR spectroscopy. Angew Chem Int Ed 41:437–440

    Article  Google Scholar 

  • Sklenar V, Piotto M, Leppik R, Saudek V (1993) Gradient-tailored water suppression for H-1-N-15 HSQC experiments optimized to retain full sensitivity. J Magn Reson A 102:241–245

    Article  Google Scholar 

  • Thiele CM (2004) Simultaneous assignment of all diastereotopic protons in strychnine using RDCs: PELG as alignment medium for organic molecules. J Org Chem 69:7408–7413

    Article  Google Scholar 

  • Thiele CM (2005) Scaling the alignment of small organic molecules in substituted polyglutamates by variable-angle sample spinning. Angew Chem Int Ed 44:2787–2790

    Article  Google Scholar 

  • Thiele CM, Berger S (2003) Probing the diastereotopicity of methylene protons in strychnine using residual dipolar couplings. Org Lett 5:705–708

    Article  Google Scholar 

  • Tjandra N, Bax A (1997a) Direct measurement of distances and angles in biomolecules by NMR in a dilute liquid crystalline medium. Science 278:1111–1114

    Article  ADS  Google Scholar 

  • Tjandra N, Bax A (1997b) Measurement of dipolar contributions to 1JCH splittings from magnetic-field dependence of J modulation in two-dimensional NMR spectra. J Magn Reson 124:512–515

    Article  Google Scholar 

  • Tjandra N, Omichinski JG, Gronenborn AM, Clore GM, Bax A (1997) Use of dipolar H-1-N-15 and H-1-C-13 couplings in the structure determination of magnetically oriented macromolecules in solution. Nat Struct Biol 4:732–738

    Article  Google Scholar 

  • Tolman JR, Prestegard JH (1996a) Measurement of amide N-15-H-1 one-bond couplings in proteins using accordion heteronuclear-shift-correlation experiments. J Magn Reson B 112:269–274

    Article  Google Scholar 

  • Tolman JR, Prestegard JH (1996b) A quantitative J-correlation experiment for the accurate measurement of one-bond amide N-15-H-1 couplings in proteins. J Magn Reson B 112:245–252

    Article  Google Scholar 

  • Uhrín D, Liptaj T, Kövér KE (1993) Modified BIRD pulses and design of heteronuclear pulse sequences. J Magn Reson A 101:41–46

    Article  Google Scholar 

  • Verdier L, Sakhaii P, Zweckstetter M, Griesinger C (2003) Measurement of long range H,C couplings in natural products in orienting media: a tool for structure elucidation of natural products. J Magn Reson 163:353–359

    Article  ADS  Google Scholar 

  • Wendeler M, Hoernschemeyer J, John M, Werth N, Schoeniger M, Lemm T, Hartmann R, Kessler H, Sandhoff K (2004) Expression of the GM2-activator protein in the methylotrophic yeast Pichia pastoris, purification, isotopic labeling, and biophysical characterization. Protein Expression and Purification 34:147–157

    Article  Google Scholar 

  • Yan JL, Delaglio F, Kaerner A, Kline AD, Mo HP, Shapiro MJ, Smitka TA, Stephenson GA, Zartler ER (2004) Complete relative stereochemistry of multiple stereocenters using only residual dipolar couplings. J Am Chem Soc 126:5008–5017

    Article  Google Scholar 

  • Yan JL, Kline AD, Mo HP, Shapiro MJ, Zartler ER (2003) A novel method for the determination of stereochemistry in six-membered chairlike rings using residual dipolar couplings. J Org Chem 68:1786–1795

    Article  Google Scholar 

  • Yang DW, Tolman JR, Goto NK, Kay LE (1998) An HNCO-based pulse scheme for the measurement of C-13(alpha)-H-1(alpha) one-bond dipolar couplings in N-15, C-13 labeled proteins. J Biomol NMR 12:325–332

    Article  Google Scholar 

Download references

Acknowledgment

B.L. and H.K. thank the Fonds der Chemischen Industrie and the Deutsche Forschungsgemeinschaft (Emmy Noether fellowship LU 835/1-1; Ke 147/37-1) for financial support. We thank Martin Sukopp (Stanford University, USA) for the synthesis of PA4, Michaela Wendeler (National Cancer Institute, Frederick MD, USA) and Konrad Sandhoff (Universität Bonn, Germany) for kindly providing Saposin C and Jochen Klages (TU München, Germany) for help with the assignment of Saposin C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burkhard Luy.

Appendix

Appendix

Neglecting strong coupling artifacts, the evolution of transverse operators during a BIRDd,X element applied to a three spin system consisting of one heteronucleus X, one directly coupled proton spin I d, and one remotely coupled proton spin I r with the corresponding couplings J d,X  > J d,r  ≈ J r,X , results in the following transfers:

$$ \begin{aligned} I_x^d &\longrightarrow I_x^d\cos2\pi\delta^1J_{d,X}\cos2\pi\delta^n J_{d,r} +2I_z^dX_z\sin2\pi\delta^1J_{d,X}\cos2\pi\delta^n J_{d,r}\\ &\,-2I_z^dI_y^r\cos2\pi\delta^1J_{d,X}\sin2\pi\delta^n J_{d,r} +4I_x^dI_y^rX_z\sin2\pi\delta^1J_{d,X}\sin2\pi\delta^n J_{d,r}\\ I_y^d&\longrightarrow I_y^d\\ 2I_x^dX_z&\longrightarrow -2I_x^dX_z\cos2\pi\delta^1J_{d,X}\cos2\pi\delta^n J_{d,r} -I_z^d\sin2\pi\delta^1J_{d,X}\cos2\pi\delta^n J_{d,r}\\ &\,+4I_z^dI_y^rX_z\cos2\pi\delta^1J_{d,X}\sin2\pi\delta^n J_{d,r} -2I_x^dI_y^r\sin2\pi\delta^1J_{d,X}\sin2\pi\delta^n J_{d,r}\\ 2I_y^d X_z &\longrightarrow -2I_y^dX_z\\ X_x&\longrightarrow X_x\cos2\pi\delta^1J_{d,X}\cos2\pi\delta^1 J_{r,X} -2I_y^dX_y\sin2\pi\delta^1J_{d,X}\cos2\pi\delta^1 J_{r,X}\\ &\,-2I_y^rX_y\cos2\pi\delta^1J_{d,X}\sin2\pi\delta^1 J_{r,X} -4I_y^dI_y^rX_x\sin2\pi\delta^1J_{d,X}\sin2\pi\delta^1 J_{r,X}\\ X_y&\longrightarrow -X_y\cos2\pi\delta^1J_{d,X}\cos2\pi\delta^1 J_{r,X} -2I_y^dX_x\sin2\pi\delta^1J_{d,X}\cos2\pi\delta^1 J_{r,X}\\ &\,-2I_y^rX_x\cos2\pi\delta^1J_{d,X}\sin2\pi\delta^1 J_{r,X} +4I_y^dI_y^rX_y\sin2\pi\delta^1J_{d,X}\sin2\pi\delta^1 J_{r,X}\\ 2I_z^dX_x&\longrightarrow 2I_z^dX_x\cos2\pi\delta^1J_{r,X}\cos2\pi\delta^n J_{d,r} -4I_z^dI_y^rX_y\sin2\pi\delta^1J_{r,X}\cos2\pi\delta^n J_{d,r}\\ &\,+4I_x^dI_y^rX_x\cos2\pi\delta^1J_{r,X}\sin2\pi\delta^n J_{d,r} -2I_x^dX_y\sin2\pi\delta^1J_{r,X}\sin2\pi\delta^n J_{d,r}\\ 2I_z^dX_y&\longrightarrow -2I_z^dX_y\cos2\pi\delta^1J_{r,X}\cos2\pi\delta^n J_{d,r} -4I_z^dI_y^rX_x\sin2\pi\delta^1J_{r,X}\cos2\pi\delta^n J_{d,r}\\ &\,-4I_x^dI_y^rX_y\cos2\pi\delta^1J_{r,X}\sin2\pi\delta^n J_{d,r} -2I_x^dX_x\sin2\pi\delta^1J_{r,X}\sin2\pi\delta^n J_{d,r}\\ \end{aligned} $$

If we assume that long-range heteronuclear and homonuclear couplings can be neglected during the BIRDd,X element, the transfers can be simplified to

$$ \begin{array}{lll} I_x^d &\longrightarrow &I_x^d\cos2\pi\delta^1J_{d,X}+2I_z^dX_z\sin2\pi\delta^1J_{d,X}\\ I_y^d &\longrightarrow &I_y^d\\ 2I_x^dX_z& \longrightarrow &-2I_x^dX_z\cos2\pi\delta^1J_{d,X}-I_z^d\sin2\pi\delta^1J_{d,X}\\ 2I_y^dX_z &\longrightarrow &-2I_y^dX_z\end{array} $$

for proton transverse operators and

$$ \begin{array}{lll} X_x& \longrightarrow &X_x\cos2\pi\delta^1J_{d,X}-2I_y^dX_y\sin2\pi\delta^1J_{d,X}\\ X_y& \longrightarrow &-X_y\cos2\pi\delta^1J_{d,X}-2I_y^dX_x\sin2\pi\delta^1J_{d,X}\\ 2I_z^dX_x &\longrightarrow &2I_z^dX_x\\ 2I_z^dX_y &\longrightarrow &-2I_z^dX_y \end{array}$$

for the corresponding transverse operators of the heteronucleus. The magnetization of every other operator is scaled by \({\cos(2\pi\delta^{1}J_{d,X})},\) resulting in an average loss of \({0.5^\ast(1- \cos(2\pi\delta^{1}J_{d,X}))}\) due to incomplete transfer during the BIRDd,X filter.

To examine the influence of homonuclear and long-range heteronuclear couplings, we assume a perfectly matched delay δ, leading to \({\hbox{cos}(2\pi\delta^{1}J_{d,X})=-1}\) and \({\sin(2\pi\delta^{1}J_{d,X})=0}.\) The transfers are then

$$ \begin{array}{lll} I_x^d &\longrightarrow &-I_x^d\cos2\pi\delta^nJ_{d,r}+2I_z^dI_y^r\sin2\pi\delta^nJ_{d,r}\\ I_y^d &\longrightarrow &I_y^d\\ 2I_x^dX_z &\longrightarrow &2I_x^dX_z\cos2\pi\delta^nJ_{d,r}-4I_z^dI_y^rX_z\sin2\pi\delta^nJ_{d,r}\\ 2I_y^dX_z &\longrightarrow &-2I_y^dX_z\end{array} $$

and

$$ \begin{array}{lll} X_x& \longrightarrow &-X_x\cos2\pi\delta^1J_{r,X}+2I_y^rX_y\sin2\pi\delta^1J_{r,X}\\ X_y& \longrightarrow &X_y\cos2\pi\delta^1J_{r,X}+2I_y^rX_x\sin2\pi\delta^1J_{r,X}\\ 2I_z^dX_x&\longrightarrow &2I_z^dX_x\cos2\pi\delta^1J_{r,X}\cos2\pi\delta^n J_{d,r} -4I_z^dI_y^rX_y\sin2\pi\delta^1J_{r,X}\cos2\pi\delta^n J_{d,r}\\ & &+4I_x^dI_y^rX_x\cos2\pi\delta^1J_{r,X}\sin2\pi\delta^n J_{d,r} -2I_x^dX_y\sin2\pi\delta^1J_{r,X}\sin2\pi\delta^n J_{d,r}\\ 2I_z^dX_y&\longrightarrow &-2I_z^dX_y\cos2\pi\delta^1J_{r,X}\cos2\pi\delta^n J_{d,r} -4I_z^dI_y^rX_x\sin2\pi\delta^1J_{r,X}\cos2\pi\delta^n J_{d,r}\\ & &-4I_x^dI_y^rX_y\cos2\pi\delta^1J_{r,X}\sin2\pi\delta^n J_{d,r} -2I_x^dX_x\sin2\pi\delta^1J_{r,X}\sin2\pi\delta^n J_{d,r}\end{array} $$

As with the direct one-bond coupling, every other transverse component is scaled by the homonuclear coupling \({\cos(2\pi \delta ^{1}J_{d,r})},\) causing an average loss of magnetization of 0.5*(1- \({\cos(2\pi \delta ^{1}J_{d,r}))}.\) Heteronuclear long-range couplings, instead, do not affect proton transverse operators, but reduce all transverse operators on the heteronucleus according to \({(1-\cos(2\pi \delta ^{1}J_{r,X}))}.\)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Furrer, J., John, M., Kessler, H. et al. J-Spectroscopy in the presence of residual dipolar couplings: determination of one-bond coupling constants and scalable resolution. J Biomol NMR 37, 231–243 (2007). https://doi.org/10.1007/s10858-006-9130-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-006-9130-x

Keywords

Navigation