Advertisement

Journal of Biomolecular NMR

, Volume 37, Issue 3, pp 231–243 | Cite as

J-Spectroscopy in the presence of residual dipolar couplings: determination of one-bond coupling constants and scalable resolution

  • Julien Furrer
  • Michael John
  • Horst Kessler
  • Burkhard Luy
Article

Abstract

The access to weak alignment media has fuelled the development of methods for efficiently and accurately measuring residual dipolar couplings (RDCs) in NMR-spectroscopy. Among the wealth of approaches for determining one-bond scalar and RDC constants only J-modulated and J-evolved techniques retain maximum resolution in the presence of differential relaxation. In this article, a number of J-evolved experiments are examined with respect to the achievable minimum linewidth in the J-dimension, using the peptide PA4 and the 80-amino-acid-protein Saposin C as model systems. With the JE-N-BIRD d,X -HSQC experiment, the average full-width at half height could be reduced to approximately 5 Hz for the protein, which allows the additional resolution of otherwise unresolved peaks by the active (J+D)-coupling. Since RDCs generally can be scaled by the choice of alignment medium and alignment strength, the technique introduced here provides an effective resort in cases when chemical shift differences alone are insufficient for discriminating signals. In favorable cases even secondary structure elements can be distinguished.

Keywords

RDCs BIRD-element Scalable resolution J-Evolution J-Spectroscopy 

Notes

Acknowledgment

B.L. and H.K. thank the Fonds der Chemischen Industrie and the Deutsche Forschungsgemeinschaft (Emmy Noether fellowship LU 835/1-1; Ke 147/37-1) for financial support. We thank Martin Sukopp (Stanford University, USA) for the synthesis of PA4, Michaela Wendeler (National Cancer Institute, Frederick MD, USA) and Konrad Sandhoff (Universität Bonn, Germany) for kindly providing Saposin C and Jochen Klages (TU München, Germany) for help with the assignment of Saposin C.

References

  1. Bax A (2003) Weak alignment offers new NMR opportunities to study protein structure and dynamics. Protein Science 12:1–16CrossRefGoogle Scholar
  2. Bax A, Tjandra N (1997) High-resolution heteronuclear NMR of human ubiquitin in an aqueous liquid crystalline medium. J Biomol NMR 10:289–292CrossRefGoogle Scholar
  3. Bendiak B (2002) Sensitive through-space dipolar correlations between nuclei of small organic molecules by partial alignment in a deuterated liquid solvent. J Am Chem Soc 124:14862–14863CrossRefGoogle Scholar
  4. Bruschweiler R, Zhang FL (2004) Covariance nuclear magnetic resonance spectroscopy. J Chem Phys 120:5253–5260CrossRefADSGoogle Scholar
  5. Brutscher B, Boisbouvier J, Pardi A, Marion D, Simorre JP (1998) Improved sensitivity and resolution in H-1-C-13 NMR experiments of RNA. J Am Chem Soc 120:11845–11851CrossRefGoogle Scholar
  6. de Alba E, Weiler S, Tjandra N (2003) Solution structure of human Saposin C: pH-dependent interaction with phospholipid vesicles. Biochemistry 42:14729–14740CrossRefGoogle Scholar
  7. Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRpipe – a multidimensional spectral processing system based on unix pipes. J Biomol NMR 6:277–293CrossRefGoogle Scholar
  8. Fehér K, Berger S, Kövér KE (2003) Accurate determination of small one-bond heteronuclear residual dipolar couplings by F1 coupled HSQC modified with a G-BIRDr module. J Magn Reson 163:340–346CrossRefADSGoogle Scholar
  9. Freedberg DI (2002) An alternative method for pucker determination in carbohydrates from residual dipolar couplings: A solution NMR study of the fructofuranosyl ring of sucrose. J Am Chem Soc 124:2358–2362CrossRefGoogle Scholar
  10. Freeman R, Kupce E (2003) New methods for fast multidimensional NMR. J Biomol NMR 27:101–113CrossRefGoogle Scholar
  11. Freudenberger JC, Knör S, Kobzar K, Heckmann D, Paululat T, Kessler H, Luy B (2005) Stretched poly(vinyl acetate) gels as NMR alignment media for the measurement of residual dipolar couplings in polar organic solvents. Angew Chem Int Ed 44:423–426CrossRefGoogle Scholar
  12. Freudenberger JC, Spiteller P, Bauer R, Kessler H, Luy B (2004) Stretched poly(dimethylsiloxane) gels as NMR alignment media for apolar and weakly polar organic solvents: An ideal tool for measuring RDCs at low molecular concentrations. J Am Chem Soc 126:14690–14691CrossRefGoogle Scholar
  13. Goddard TD, Kneller DG San Francisco, University of CaliforniaGoogle Scholar
  14. Haberz P, Farjon J, Griesinger C (2005) A DMSO-compatible orienting medium: Towards the investigation of the stereochemistry of natural products. Angew Chem Int Ed 44:427–429CrossRefGoogle Scholar
  15. Hansen MR, Mueller L, Pardi A (1998) Tunable alignment of macromolecules by filamentous phage yields dipolar coupling interactions. Nat Struct Biol 5:1065–1074CrossRefGoogle Scholar
  16. John M, Wendeler M, Heller M, Sandhoff K, Kessler H (2006) Characterization of human saposins by NMR spectroscopy. Biochemistry 45:5206–5216CrossRefGoogle Scholar
  17. Jung YS, Sharma M, Zweckstetter M (2004) Simultaneous assignment and structure determination of protein backbones by using NMR dipolar couplings. Angew Chem Int Ed 43:3479–3481CrossRefGoogle Scholar
  18. Jung YS, Zweckstetter M (2004a) Backbone assignment of proteins with known structure using residual dipolar couplings. J Biomol NMR 30:25–35CrossRefGoogle Scholar
  19. Jung YS, Zweckstetter M (2004b) Mars – robust automatic backbone assignment of proteins. J Biomol NMR 30:11–23CrossRefGoogle Scholar
  20. Kessler H (1982) Peptide conformations 19 Conformation and biological activity of cyclic peptides. Angewandte Chemie-International Edition in English 21:512–523CrossRefGoogle Scholar
  21. Kim S, Szyperski T (2003) GFT NMR, a new approach to rapidly obtain precise high-dimensional NMR spectral information. J Am Chem Soc 125:1385–1393CrossRefGoogle Scholar
  22. Klages J, Neubauer C, Coles M, Kessler H, Luy B (2005) Structure refinement of Cyclosporin A in chloroform by using RDCs measured in a stretched PDMS-gel. ChemBioChem 6:1672–1678CrossRefGoogle Scholar
  23. Kneller DG, Kuntz ID (1993) J Cell Biochem Suppl 17 C:254Google Scholar
  24. Kobzar K, Kessler H, Luy B (2005) Stretched gelatin gels as chiral alignment media for the discrimination of enantiomers by NMR spectroscopy. Angew Chem Int Ed 44:3145–3147CrossRefGoogle Scholar
  25. Koskela H, Kilpelainen I, Heikkinen S (2004) CAGEBIRD: improving the GBIRD filter with a CPMG sequence. J Magn Reson 170:121–126CrossRefADSGoogle Scholar
  26. Kövér KE, Batta G (2004) More line narrowing in TROSY by decoupling of long-range couplings: shift correlation and 1JNC' coupling constant measurements. J Magn Reson 170:184–190CrossRefADSGoogle Scholar
  27. Kövér KE, Forgó P (2004) J-modulated ADEQUATE (JM-ADEQUATE) experiment for accurate measurement of carbon-carbon coupling constants. J Magn Reson 166:47–52CrossRefADSGoogle Scholar
  28. Luy B, Barchi JJ, Marino JP (2001) S3E-E.COSY methods for the measurement of F-19 associated scalar and dipolar coupling constants. J Magn Reson 152:179–184CrossRefADSGoogle Scholar
  29. Luy B, Marino JP (2001a) Measurement and application of H-1-F-19 dipolar couplings in the structure determination of 2 '-fluorolabeled RNA. J Biomol NMR 20:39–47CrossRefGoogle Scholar
  30. Luy B, Marino JP (2001b) H-1-P-31 CPMG-correlated experiments for the assignment of nucleic acids. J Am Chem Soc 123:11306–11307CrossRefGoogle Scholar
  31. Luy B, Kobzar K, Kessler H (2004) An easy and scalable method for the partial alignment of organic molecules for measuring residual dipolar couplings. Angew Chem Int Ed 43:1092–1094CrossRefGoogle Scholar
  32. Luy B, Kobzar K, Knör S, Furrer J, Heckmann D, Kessler H (2005) Orientational properties of stretched polystyrene gels in organic solvents and the suppression of their residual H-1 NMR signals. J Am Chem Soc 127:6459–6465CrossRefGoogle Scholar
  33. Luy B, Marino JP (2003) JE-TROSY: combined J-and TROSY-spectroscopy for the measurement of one-bond couplings in macromolecules. J Magn Reson 163:92–98CrossRefADSGoogle Scholar
  34. Mandelshtam VA, Taylor HS, Shaka AJ (1998) Application of the filter diagonalization method to one-and two-dimensional NMR spectra. J Magn Reson 133:304–312CrossRefGoogle Scholar
  35. Martin-Pastor M, Bush CA (2001) Refined structure of a flexible heptasaccharide using H-1-C-13 and H-1-H-1 NMR residual dipolar couplings in concert with NOE and long range scalar coupling constants. J Biomol NMR 19:125–139CrossRefGoogle Scholar
  36. Meissner A, Duus JO, Sørensen OW (1997a) Integration of spin-state-selective excitation into 2D NMR correlation experiments with heteronuclear ZQ/2Q pi rotations for 1JXH-resolved E.COSY-type measurement of heteronuclear coupling constants in proteins. J Biomol NMR 10:89–94CrossRefGoogle Scholar
  37. Meissner A, Duus JO, Sørensen OW (1997b) Spin-state-selective excitation. Application for E.COSY-type measurement of JHH coupling constants. J Magn Reson 128:92–97CrossRefGoogle Scholar
  38. Mierke DF, Kurz M, Kessler H (1994) Peptide flexibility and calculations of an ensemble of molecules. J Am Chem Soc 116:1042–1049CrossRefGoogle Scholar
  39. Mori S, Abeygunawardana C, Johnson MO, Vanzijl PCM (1995) Improved sensitivity of HSQC spectra of exchanging protons at short interscan delays using a new fast HSQC (FHSQC) detection scheme that avoids water saturation. J Magn Reson B 108:94–98CrossRefGoogle Scholar
  40. Ottiger M, Delaglio F, Bax A (1998a) Measurement of J and dipolar couplings from simplified two-dimensional NMR spectra. J Magn Reson 131:373–378CrossRefGoogle Scholar
  41. Ottiger M, Delaglio F, Marquardt JL, Tjandra N, Bax A (1998b) Measurement of dipolar couplings for methylene and methyl sites in weakly oriented macromolecules and their use in structure determination. J Magn Reson 134:365–369CrossRefGoogle Scholar
  42. Permi P (2002) A spin-state-selective experiment for measuring heteronuclear one-bond and homonuclear two-bond couplings from an HSQC-type spectrum. J Biomol NMR 22:27–35CrossRefGoogle Scholar
  43. Pham TN, Liptaj T, Bromek K, Uhrín D (2002) Measurement of small one-bond proton-carbon residual dipolar coupling constants in partially oriented C-13 natural abundance oligosaccharide samples: Analysis of heteronuclear 1JCH-modulated spectra with the BIRD inversion pulse. J Magn Reson 157:200–209CrossRefADSGoogle Scholar
  44. Piotto M, Saudek V, Sklenar V (1992) Gradient-tailored excitation for single-quantum NMR-spectroscopy of aqueous solutions. J Biomol NMR 2:661–665CrossRefGoogle Scholar
  45. Prestegard JH (1998) New techniques in structural NMR – anisotropic interactions. Nat Struct Biol 5:517–522CrossRefGoogle Scholar
  46. Shaka AJ, Barker PB, Freeman R (1985) Computer-optimized decoupling scheme for wideband applications and low-level operation. J Magn Reson 64:547–552Google Scholar
  47. Simon B, Sattler M (2002) De Novo structure determination from residual dipolar couplings by NMR spectroscopy. Angew Chem Int Ed 41:437–440CrossRefGoogle Scholar
  48. Sklenar V, Piotto M, Leppik R, Saudek V (1993) Gradient-tailored water suppression for H-1-N-15 HSQC experiments optimized to retain full sensitivity. J Magn Reson A 102:241–245CrossRefGoogle Scholar
  49. Thiele CM (2004) Simultaneous assignment of all diastereotopic protons in strychnine using RDCs: PELG as alignment medium for organic molecules. J Org Chem 69:7408–7413CrossRefGoogle Scholar
  50. Thiele CM (2005) Scaling the alignment of small organic molecules in substituted polyglutamates by variable-angle sample spinning. Angew Chem Int Ed 44:2787–2790CrossRefGoogle Scholar
  51. Thiele CM, Berger S (2003) Probing the diastereotopicity of methylene protons in strychnine using residual dipolar couplings. Org Lett 5:705–708CrossRefGoogle Scholar
  52. Tjandra N, Bax A (1997a) Direct measurement of distances and angles in biomolecules by NMR in a dilute liquid crystalline medium. Science 278:1111–1114CrossRefADSGoogle Scholar
  53. Tjandra N, Bax A (1997b) Measurement of dipolar contributions to 1JCH splittings from magnetic-field dependence of J modulation in two-dimensional NMR spectra. J Magn Reson 124:512–515CrossRefGoogle Scholar
  54. Tjandra N, Omichinski JG, Gronenborn AM, Clore GM, Bax A (1997) Use of dipolar H-1-N-15 and H-1-C-13 couplings in the structure determination of magnetically oriented macromolecules in solution. Nat Struct Biol 4:732–738CrossRefGoogle Scholar
  55. Tolman JR, Prestegard JH (1996a) Measurement of amide N-15-H-1 one-bond couplings in proteins using accordion heteronuclear-shift-correlation experiments. J Magn Reson B 112:269–274CrossRefGoogle Scholar
  56. Tolman JR, Prestegard JH (1996b) A quantitative J-correlation experiment for the accurate measurement of one-bond amide N-15-H-1 couplings in proteins. J Magn Reson B 112:245–252CrossRefGoogle Scholar
  57. Uhrín D, Liptaj T, Kövér KE (1993) Modified BIRD pulses and design of heteronuclear pulse sequences. J Magn Reson A 101:41–46CrossRefGoogle Scholar
  58. Verdier L, Sakhaii P, Zweckstetter M, Griesinger C (2003) Measurement of long range H,C couplings in natural products in orienting media: a tool for structure elucidation of natural products. J Magn Reson 163:353–359CrossRefADSGoogle Scholar
  59. Wendeler M, Hoernschemeyer J, John M, Werth N, Schoeniger M, Lemm T, Hartmann R, Kessler H, Sandhoff K (2004) Expression of the GM2-activator protein in the methylotrophic yeast Pichia pastoris, purification, isotopic labeling, and biophysical characterization. Protein Expression and Purification 34:147–157CrossRefGoogle Scholar
  60. Yan JL, Delaglio F, Kaerner A, Kline AD, Mo HP, Shapiro MJ, Smitka TA, Stephenson GA, Zartler ER (2004) Complete relative stereochemistry of multiple stereocenters using only residual dipolar couplings. J Am Chem Soc 126:5008–5017CrossRefGoogle Scholar
  61. Yan JL, Kline AD, Mo HP, Shapiro MJ, Zartler ER (2003) A novel method for the determination of stereochemistry in six-membered chairlike rings using residual dipolar couplings. J Org Chem 68:1786–1795CrossRefGoogle Scholar
  62. Yang DW, Tolman JR, Goto NK, Kay LE (1998) An HNCO-based pulse scheme for the measurement of C-13(alpha)-H-1(alpha) one-bond dipolar couplings in N-15, C-13 labeled proteins. J Biomol NMR 12:325–332CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Julien Furrer
    • 1
    • 2
  • Michael John
    • 2
  • Horst Kessler
    • 2
  • Burkhard Luy
    • 2
  1. 1.Organisch-Chemisches InstitutUniversität HeidelbergHeidelbergGermany
  2. 2.Department Chemie: Organische Chemie IITechnische Universität MünchenGarchingGermany

Personalised recommendations