Journal of Biomolecular NMR

, Volume 32, Issue 3, pp 179–193 | Cite as

Iron Responsive Element RNA Flexibility Described by NMR and Isotropic Reorientational Eigenmode Dynamics

  • Scott A. Showalter
  • Nathan A. Baker
  • Changguo Tang
  • Kathleen B. Hall


The first example of the application of reorientational eigenmode dynamics (RED) to RNA is shown here for the small and floppy Iron Responsive Element (IRE) RNA hairpin. Order parameters calculated for bases and riboses from a 12 ns molecular dynamics trajectory are compared to experimentally determined order parameters from 13C-1H NMR relaxation experiments, and shown to be in qualitative agreement. Given the small size of the IRE hairpin and its very flexible loop, isotropic RED (iRED) was also used to analyze the trajectory in order to describe its dynamic motions. iRED analysis shows that the global and internal dynamics of the IRE are not rigorously separable, which will result in inaccurate experimental order parameters. In addition, the iRED analysis described the many correlated motions that comprise the dynamics of the IRE RNA. The combined use of NMR relaxation, RED, and iRED provide a uniquely detailed description of IRE RNA dynamics.


IRE RNA molecular dynamics NMR structure and dynamics RED analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

supp.pdf (364 kb)
Supplementary material


  1. Addess, K.J., Basilion, J.P., Klausner, R.D., Rouault, T.A., Pardi, A. 1997J. Mol. Biol.2747283CrossRefPubMedGoogle Scholar
  2. Amadei, A., Linssen, A.B.M., Berendsen, H.J.C. 1993Proteins17412425CrossRefPubMedGoogle Scholar
  3. Barton, H.A., Eisenstein, R.S., Bomford, A., Munro, H.N. 1990J. Biol. Chem.26570007008PubMedGoogle Scholar
  4. Basilion, J.P., Rouault, T.A., Massinople, C.M., Klausner, R.D., Burgess, W.H. 1994Proc. Natl. Acad. Sci. USA.91574578PubMedGoogle Scholar
  5. Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., Di Nola, A., Haak, J.R. 1984J. Phys. Chem.8136843690CrossRefGoogle Scholar
  6. Bettany, A.J., Eisenstein, R.S., Munro, H.N. 1992J. Biol. Chem.2671653116537PubMedGoogle Scholar
  7. Brüschweiler, R. 1995J. Chem. Phys.10233963403CrossRefGoogle Scholar
  8. Brüschweiler, R., Wright, P.E. 1994J. Am. Chem. Soc.11684268427CrossRefGoogle Scholar
  9. Butcher, S.E., Dieckmann, T., Feigon, J. 1997EMBO J.1674907499CrossRefPubMedGoogle Scholar
  10. Case, D.A., Pearlman, D.A., Caldwell, J.W., Cheatham III, T.E., Wang, J., Ross, W.S., Simmerling, C., Darden, T., Merz, K.M., Stanton, R.V., Cheng, A., Vincent, J.J., Crowley, M., Tsui, V., Gohlke, H., Radmer, R., Duan, Y., Pitera, J., Massova, I., Siebel, G.L., Singh, U.C., Weiner, P. and Kollman, P.A. (2002) AMBER 7 User’s Manual. University of CaliforniaGoogle Scholar
  11. Casey, J.L., Henze, M.W., Koeller, D.M., Caughman, S.W., Rouault, T.A., Klausner, R.D., Harford, J.B. 1988Science240924928PubMedGoogle Scholar
  12. Cheng, X., Hornak, V., Simmerling, C. 2004J. Phys. Chem. B108426437CrossRefGoogle Scholar
  13. Cornell, W.D., Cieplak, P., Bayly, C.I., Gould, I.R., Merz, K.M., Ferguson, D.M., Spellmeyer, D.C., Fox, T., Caldwell, J.W., Kollman, P.A. 1995J. Am. Chem. Soc.11751795197CrossRefGoogle Scholar
  14. Darden, T.A. 2001Becker, O.M.Mackerell, A.D.Roux, B.Watanabe, M. eds. Computational Biochemistry and Biophysics, Treatment of long-range forces and potentialMarcel Dekker, Inc.New York91Google Scholar
  15. Dayie, K.T., Brodsky, A.S., Williamson, J.R. 2002J. Mol. Biol.317263278CrossRefPubMedGoogle Scholar
  16. Fiala, R., Czernek, J., Sklenář, V. 2000J. Biomolec. NMR16291302CrossRefGoogle Scholar
  17. Fiala, R., Munzarová, M.L., Sklenář, V. 2004J. Biomol. NMR29477490CrossRefPubMedGoogle Scholar
  18. Hall, K.B., Tang, C. 1998Biochemistry3793239332CrossRefPubMedGoogle Scholar
  19. Hall, K.B., Williams, D.J. 2004RNA103447Google Scholar
  20. Heus, H.A., Pardi, A. 1991Science253191194PubMedGoogle Scholar
  21. Hirling, H., Henderson, B.R., Kuhn, L.C. 1994EMBO J.13453461PubMedGoogle Scholar
  22. Hoogstraten, C., Wank, J.R., Pardi, A. 2000Biochemistry3999519958Google Scholar
  23. Jaffrey, S.R., Haile, D.J., Klausner, R.D., Harford, J.B. 1993Nucleic Acids Res.2146274631PubMedGoogle Scholar
  24. Jorgensen, W.L., Chandrasekhar, J., Madura, J.D. 1983J. Chem. Phys.79926935CrossRefGoogle Scholar
  25. Kaldy, P., Menotti, E., Moret, R., Kuhn, L.C. 1999EMBO J.1860736083CrossRefPubMedGoogle Scholar
  26. Kikinis, Z., Eisenstein, R.S., Bettany, A.J.E., Munro, H.N. 1995Nucleic Acids Res.2341904195PubMedGoogle Scholar
  27. King, G.C., Harper, J.W., Xi, Z. 1995Methods Enzymol.261436450PubMedGoogle Scholar
  28. Kitao, A., Hirata, F., Go, N. 1991Chem. Phys.158447472CrossRefGoogle Scholar
  29. Kraulis, P.J. 1991J. Appl. Crystallogr.24946950Google Scholar
  30. Kroenke, C.D., Rance, M., Palmer, III, A.G. 1999J. Am. Chem. Soc.1211011910125Google Scholar
  31. Laing, L.G., Hall, K.B. 1996Biochemistry351358613594CrossRefPubMedGoogle Scholar
  32. Leibold, E.A., Laudano, A., Yu, Y. 1990Nucleic Acids Res.1818191824PubMedGoogle Scholar
  33. Lipari, G., Szabo, A. 1982aJ. Am. Chem. Soc.10445464559CrossRefGoogle Scholar
  34. Lipari, G., Szabo, A. 1982bJ. Am. Chem. Soc.10445594570CrossRefGoogle Scholar
  35. Mandel, A.M., Akke, M., Palmer, A.G. 1995J. Mol. Biol245144163CrossRefGoogle Scholar
  36. Miller, J.L., Kollman, P.A. 1997J. Mol. Biol.270436450CrossRefPubMedGoogle Scholar
  37. Nikonowicz, E.P., Sirr, A., Legault, F.M., Jucker, P., Baer, L.M., Pardi, A. 1992Nucleic Acids Res.2045074526PubMedGoogle Scholar
  38. Pearlmann, D.A., Case, D.A., Caldwell, J.W., Ross, W.S., Cheatham, T.E., DeBolt, S., Ferguson, D., Seibel, G., Kollman, P. 1995Comput. Phys. Commun.91141CrossRefGoogle Scholar
  39. Ponder, J.W., Case, D.A. 2003Adv. Protein Chem.662785PubMedGoogle Scholar
  40. Prompers, J.J., Brüschweiler, R. 2001J. Am. Chem. Soc.12373057313Google Scholar
  41. Prompers, J.J., Brüschweiler, R. 2002J. Am. Chem. Soc.12445224534Google Scholar
  42. Puglisi, J.D., Tan, R., Calnan, B.J., Frankel, A.D., Williamson, J.R. 1992Science2577680PubMedGoogle Scholar
  43. Reiter, N.J., Blad, H., Abildgaard, F., Butcher, S.E. 2004Biochemistry431373913747CrossRefPubMedGoogle Scholar
  44. Robbins, A.H., Stout, C.D. 1989Proc. Natl. Acad. Sci. USA8636393643PubMedGoogle Scholar
  45. Ryckaert, J.-P., Ciccotti, G., van Gunsteren, W.F. 1977J.␣Comput. Phys.23327341CrossRefGoogle Scholar
  46. Showalter, S.A., Hall, K.B. 2002J. Mol. Biol.322533542CrossRefPubMedGoogle Scholar
  47. Showalter S.A. and Hall, K.B. (2005) Methods Enzymol.394, in pressGoogle Scholar
  48. Sitkoff, D., Case, D.A. 1998Prog. NMR Spectrosc.32165229CrossRefGoogle Scholar
  49. Stueber, D., Grant, D.M. 2002J. Am. Chem. Soc.1241053910551Google Scholar
  50. Vitalis, A., Baker, N.A., McCammon, J.A. 2004Mol. Simulation304561CrossRefGoogle Scholar
  51. Vugmeyster, L., Raleigh, D.P., Palmer, III A.G., Vugmeister, B.E. 2003J. Am. Chem. Soc.12584008404Google Scholar
  52. Yamazaki, T., Muhandiram, R., Kay, L.E. 1994J. Am. Chem. Soc.11682668278Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Scott A. Showalter
    • 1
  • Nathan A. Baker
    • 1
    • 2
  • Changguo Tang
    • 1
  • Kathleen B. Hall
    • 1
  1. 1.Department of Biochemistry & Molecular BiophysicsUSA
  2. 2.Center for Computational BiologyWashington University School of MedicineSt LouisUSA

Personalised recommendations