Skip to main content
Log in

Chemical Shifts Provide Fold Populations and Register of β Hairpins and β Sheets

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

A detailed analysis of peptide backbone amide (HN) and Hα chemical shifts reveals a consistent pattern for β hairpins and three-stranded β sheets. The Hα’s at non-hydrogen-bonded strand positions are inwardly directed and shifted downfield ~1 ppm due largely to an anisotropy contribution from the cross-strand amide function. The secondary structure associated Hα shift deviations for the H-bonded strand positions are also positive but much smaller (0.1–0.3 ppm) and the turn residues display negative Hα chemical shift deviations (CSDs). The pattern of (HN) shift deviations is an even better indicator of both hairpin formation and register, with the cross-strand H-bonded sites shifted downfield (also by ~1 ppm) and with diagnostic values for the first turn residue and the first strand position following the turn. These empirical observations, initially made for [2:2]/[2:4]-type-I' and -II' hairpins, are rationalized and can be extended to the analysis of other turns, hairpin classes ([3:5], [4:4]/[4:6]), and three-stranded peptide β-sheet models. The Hα’s at non-hydrogen-bonded sites and (HN)’s in the intervening H-bonded sites provide the largest and most dependable measures of hairpin structuring and can be used for melting studies; however the intrinsic temperature dependence of (HN) shifts deviations needs to reflect the extent of solvent sequestration in the folded state. Several observations made in the course of this study provide insights into β-sheet folding mechanisms: (1) The magnitude of the (HN) shifts suggests that the cross-strand H-bonds in peptide hairpins are as short as those in protein β sheets. (2) Even L-Pro-Gly turns, which are frequently used in unfolded controls for hairpin peptides, can support hairpin populations in aqueous fluoroalcohol media. (3) The good correlation between hairpin population estimates from cross-strand H-bonded (HN) shift deviations, Hα shift deviations, and structuring shifts at the turn locus implies that hairpin folding transitions approximate two-state behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • N.H. Andersen Y. Brodsky J.W. Neidigh K.S. Prickett (2002) Bioorg. Med. Chem. 10 79–85 Occurrence Handle1:CAS:528:DC%2BD3MXovVemtr0%3D

    CAS  Google Scholar 

  • N.H. Andersen J.R. Cort Z. Liu S.J. Sjoberg H. Tong (1996) J. Am. Chem. Soc. 118 10309–10310 Occurrence Handle1:CAS:528:DyaK28XmtFKltbg%3D

    CAS  Google Scholar 

  • N.H. Andersen R.B. Dyer R.M. Fesinmeyer F. Gai Z. Liu J.W. Neidigh H. Tong (1999) J. Am. Chem. Soc. 121 IssueID42 9879–9880 Occurrence Handle10.1021/ja991829k Occurrence Handle1:CAS:528:DyaK1MXmsVegtL0%3D

    Article  CAS  Google Scholar 

  • N.H. Andersen J.W. Neidigh S.M. Harris G.M. Lee Z. Liu H. Tong (1997) J. Am. Chem. Soc. 119 IssueID36 8547–8561 Occurrence Handle10.1021/ja963250h Occurrence Handle1:CAS:528:DyaK2sXls1Gnt78%3D

    Article  CAS  Google Scholar 

  • F.J. Blanco M.A. Jiménez J. Herranz M. Rico J. Santoro J.L. Nieto (1993) J. Am. Chem. Soc. 115 5887–5888 Occurrence Handle10.1021/ja00066a092 Occurrence Handle1:CAS:528:DyaK3sXltFOrs7o%3D

    Article  CAS  Google Scholar 

  • F.J. Blanco G. Rivas L. Serrano (1994) Nat. Struct. Biol. 1 IssueID9 584–590 Occurrence Handle10.1038/nsb0994-584 Occurrence Handle1:CAS:528:DyaK2MXitVejs7k%3D

    Article  CAS  Google Scholar 

  • F.J. Blanco L. Serrano (1995) Eur. J. Biochem. 230 634–649 Occurrence Handle10.1111/j.1432-1033.1995.tb20605.x Occurrence Handle1:CAS:528:DyaK2MXmtlSqsbs%3D

    Article  CAS  Google Scholar 

  • T. Blandl A.G. Cochran N.J. Skelton (2003) Protein Sci. 12 237–247 Occurrence Handle10.1110/ps.0228603 Occurrence Handle1:CAS:528:DC%2BD3sXos1agtA%3D%3D

    Article  CAS  Google Scholar 

  • E.K. Bradley J.F. Thomason F.E. Cohen P.A. Kosen I.D. Kuntz (1990) J. Mol. Biol. 215 IssueID4 607–622 Occurrence Handle1:CAS:528:DyaK3MXnslagsQ%3D%3D

    CAS  Google Scholar 

  • J.E. Brown W.A. Klee (1971) Biochemistry 10 470–476 Occurrence Handle10.1021/bi00779a019 Occurrence Handle1:CAS:528:DyaE3MXpsVOlug%3D%3D

    Article  CAS  Google Scholar 

  • P.-Y. Chen C.-K. Lin C.-T. Lee H. Jan S.I. Chan (2001) Protein Sci. 10 1794–1800 Occurrence Handle1:CAS:528:DC%2BD3MXmsFSgtbY%3D

    CAS  Google Scholar 

  • B. Ciani M. Jourdan M.S. Searle (2003) J. Am. Chem. Soc. 125 9038–9047 Occurrence Handle10.1021/ja030074l Occurrence Handle1:CAS:528:DC%2BD3sXltFKqs7k%3D

    Article  CAS  Google Scholar 

  • T. Cierpicki J. Otlewski (2001) J. Biomol. NMR 21 249–261 Occurrence Handle10.1023/A:1012911329730 Occurrence Handle1:CAS:528:DC%2BD3MXptlKrs7g%3D

    Article  CAS  Google Scholar 

  • A.G. Cochran N.J. Skelton M.A. Starovasnik (2001) Proc. Natl. Acad. Sci. USA 98 IssueID10 5578–5583 Occurrence Handle10.1073/pnas.091100898 Occurrence Handle1:CAS:528:DC%2BD3MXjs1Wnsrs%3D

    Article  CAS  Google Scholar 

  • J.R. Cort Z. Liu G.M. Lee S.M. Harris K.S. Prickett L.S.L. Gaeta N.H. Andersen (1994) Biochem. Biophys. Res. Commun. 204 1088–1095 Occurrence Handle10.1006/bbrc.1994.2574 Occurrence Handle1:CAS:528:DyaK2MXitV2gtrc%3D

    Article  CAS  Google Scholar 

  • J.P.H. Cox P.A. Evans L.C. Packman D.H. Williams D.N. Woolfson (1993) J. Mol. Biol. 234 483–492 Occurrence Handle10.1006/jmbi.1993.1600 Occurrence Handle1:CAS:528:DyaK2cXkvVeqtw%3D%3D

    Article  CAS  Google Scholar 

  • E. Alba Particlede M.A. Jiménez M. Rico J.L. Nieto (1996) Fold. Des. 1 IssueID2 133–144

    Google Scholar 

  • E. Alba Particlede M. Rico M.A. Jiménez (1999) Protein Sci. 8 2234–2244

    Google Scholar 

  • A.J. Doig R.L. Baldwin (1995) Protein Sci. 4 IssueID7 1325–1336 Occurrence Handle1:CAS:528:DyaK2MXms1Kgu7c%3D

    CAS  Google Scholar 

  • R.B. Dyer E.S. Manas E.S. Peterson S. Franzen R.M. Fesinmeyer N.H. Andersen (2004) Biochemistry 43 11560–11566 Occurrence Handle10.1021/bi049177m Occurrence Handle1:CAS:528:DC%2BD2cXmslaqtrk%3D

    Article  CAS  Google Scholar 

  • R.B. Dyer S.J. Maness S. Franzen R.M. Fesinmeyer K.A. Olsen N.H. Andersen (2005) Biochemistry 44 10406–10415 Occurrence Handle10.1021/bi050698z Occurrence Handle1:CAS:528:DC%2BD2MXlvVehu7k%3D

    Article  CAS  Google Scholar 

  • J.F. Espinosa S.H. Gellman (2000) Angew. Chem. Int. Ed. 39 IssueID13 2330–2333 Occurrence Handle10.1002/1521-3773(20000703)39:13<2330::AID-ANIE2330>3.0.CO;2-C Occurrence Handle1:CAS:528:DC%2BD3cXltlGku7c%3D

    Article  CAS  Google Scholar 

  • J.F. Espinosa V. Muñoz S.H. Gellman (2001) J. Mol. Biol. 306 397–402 Occurrence Handle10.1006/jmbi.2000.4349 Occurrence Handle1:CAS:528:DC%2BD3MXhtFKrtbs%3D

    Article  CAS  Google Scholar 

  • J.F. Espinosa F.A. Syud S.H. Gellman (2002) Protein Sci. 11 1492–1505 Occurrence Handle10.1110/ps.4140102 Occurrence Handle1:CAS:528:DC%2BD38XktFWgs78%3D

    Article  CAS  Google Scholar 

  • R.M. Fesinmeyer F.M. Hudson N.H. Andersen (2004) J. Am. Chem. Soc. 126 7238–7243 Occurrence Handle10.1021/ja0379520 Occurrence Handle1:CAS:528:DC%2BD2cXktFCqt7Y%3D

    Article  CAS  Google Scholar 

  • D. Frishman P. Argos (1995) Proteins 23 IssueID4 566–579 Occurrence Handle10.1002/prot.340230412 Occurrence Handle1:CAS:528:DyaK28Xht1yluw%3D%3D

    Article  CAS  Google Scholar 

  • A.C. Gibbs T.C. Bjorndahl R.S. Hodges D.S. Wishart (2002) J. Am. Chem. Soc. 124 IssueID7 1203–1213 Occurrence Handle10.1021/ja011005e Occurrence Handle1:CAS:528:DC%2BD38XntlCquw%3D%3D

    Article  CAS  Google Scholar 

  • S.R. Griffiths-Jones A.J. Maynard M.S. Searle (1999) J. Mol. Biol. 292 1051–1069 Occurrence Handle10.1006/jmbi.1999.3119 Occurrence Handle1:CAS:528:DyaK1MXmtlCrs7c%3D

    Article  CAS  Google Scholar 

  • S.R. Griffiths-Jones M.S. Searle (2000) J. Am. Chem. Soc. 122 IssueID35 8350–8356 Occurrence Handle10.1021/ja000787t Occurrence Handle1:CAS:528:DC%2BD3cXls1yitro%3D

    Article  CAS  Google Scholar 

  • S. Honda N. Kobayashi E. Munekata (2000) J. Mol. Biol. 295 269–278 Occurrence Handle10.1006/jmbi.1999.3346 Occurrence Handle1:CAS:528:DC%2BD3cXht1Cktg%3D%3D

    Article  CAS  Google Scholar 

  • R.M. Hughes M.L. Waters (2005) J. Am. Chem. Soc. 127 6518–6519 Occurrence Handle1:CAS:528:DC%2BD2MXjtFeiuro%3D

    CAS  Google Scholar 

  • I.L. Karle S.K. Awasthi P. Balaram (1996) Proc. Natl. Acad. Sci. USA 93 8189–8193 Occurrence Handle10.1073/pnas.93.16.8189 Occurrence Handle1:CAS:528:DyaK28XkvFylsbo%3D

    Article  CAS  Google Scholar 

  • S.E. Kiehna M.L. Waters (2003) Protein Sci. 12 2657–2667 Occurrence Handle10.1110/ps.03215403 Occurrence Handle1:CAS:528:DC%2BD3sXpt1Orsrs%3D

    Article  CAS  Google Scholar 

  • Kobayashi, N., Endo, S. and Munekata, E. (1993) Peptide Chem., 278–280

  • G.M. Lee C. Chen T.M. Marschner N.H. Andersen (1994) FEBS Lett. 355 IssueID2 140–146 Occurrence Handle10.1016/0014-5793(94)01153-2 Occurrence Handle1:CAS:528:DyaK2MXisVSgsLg%3D

    Article  CAS  Google Scholar 

  • M. López Paz Particlede la E. Lacroix M. Ramírez-Alvarado L. Serrano (2001) J. Mol. Biol. 312 229–246

    Google Scholar 

  • A.J. Maynard G.J. Sharman M.S. Searle (1998) J. Am. Chem. Soc. 120 IssueID9 1996–2007 Occurrence Handle10.1021/ja9726769 Occurrence Handle1:CAS:528:DyaK1cXhsFShsr8%3D

    Article  CAS  Google Scholar 

  • G. Merutka H.J. Dyson P.E. Wright (1995) J. Biomol. NMR 5 IssueID1 14–24 Occurrence Handle1:CAS:528:DyaK2MXjtlyjurc%3D

    CAS  Google Scholar 

  • V. Muñoz P.A. Thompson J. Hofrichter W.A. Eaton (1997) Nature 390 196–199

    Google Scholar 

  • K. Osapay D.A. Case (1991) J. Am. Chem. Soc. 113 IssueID25 9436–9444 Occurrence Handle10.1021/ja00025a002 Occurrence Handle1:CAS:528:DyaK3MXmslCqtLg%3D

    Article  CAS  Google Scholar 

  • K. Osapay D.A. Case (1994) J. Biomol. NMR 4 215–230 Occurrence Handle1:CAS:528:DyaK2cXjtFymtLo%3D

    CAS  Google Scholar 

  • M. Piotto V. Saudek V. Sklenar (1992) J. Biomol. NMR 2 IssueID6 661–665 Occurrence Handle10.1007/BF02192855 Occurrence Handle1:CAS:528:DyaK3sXitVyktrY%3D

    Article  CAS  Google Scholar 

  • M. Ramírez-Alvarado F.J. Blanco H. Niemann L. Serrano (1997) J. Mol. Biol. 273 IssueID4 898–912

    Google Scholar 

  • M. Ramírez-Alvarado F.J. Blanco L. Serrano (1996) Nat. Struct. Biol. 3 IssueID7 604–612

    Google Scholar 

  • D.R. Roe V. Hornack C. Simmerling (2005) J. Mol. Biol. 352 370–381 Occurrence Handle1:CAS:528:DC%2BD2MXpslylt7o%3D Occurrence Handle10.1016/j.jmb.2005.07.036

    Article  CAS  Google Scholar 

  • C.M. Santiveri M. Rico M.A. Jiménez (2001) J. Biomol. NMR 19 IssueID4 331–345 Occurrence Handle10.1023/A:1011224625129 Occurrence Handle1:CAS:528:DC%2BD3MXjsFeisbc%3D

    Article  CAS  Google Scholar 

  • C.M. Santiveri M. Rico M.A. Jiménez M.T. Pastor E. Pérez-Payá (2003) J. Pept. Res. 61 177–188 Occurrence Handle10.1034/j.1399-3011.2003.00045.x Occurrence Handle1:CAS:528:DC%2BD3sXitlOgurY%3D

    Article  CAS  Google Scholar 

  • C.M. Santiveri J. Santoro M. Rico M.A. Jiménez (2002) J. Am. Chem. Soc. 124 14903–14909 Occurrence Handle10.1021/ja0278537 Occurrence Handle1:CAS:528:DC%2BD38XovVChtrs%3D

    Article  CAS  Google Scholar 

  • C.M. Santiveri J. Santoro M. Rico M.A. Jiménez (2004) Protein Sci. 13 1134–1147 Occurrence Handle10.1110/ps.03520704 Occurrence Handle1:CAS:528:DC%2BD2cXivFakur4%3D

    Article  CAS  Google Scholar 

  • H. Schenck S. Gellman (1998) J. Am. Chem. Soc. 120 4869–4870 Occurrence Handle10.1021/ja973984+ Occurrence Handle1:CAS:528:DyaK1cXis12qtrw%3D

    Article  CAS  Google Scholar 

  • S. Schwarzinger G.J.A. Kroon T.R. Foss P.E. Wright H.J. Dyson (2000) J. Biomol. NMR 18 43–48 Occurrence Handle10.1023/A:1008386816521 Occurrence Handle1:CAS:528:DC%2BD3cXnvVGit7w%3D

    Article  CAS  Google Scholar 

  • M.S. Searle (2001) J. Chem. Soc. Perkin Trans. 2 1011–1020

    Google Scholar 

  • M.S. Searle D.H. Williams L.C. Packman (1995) Nat. Struct. Biol. 2 IssueID11 999–1006 Occurrence Handle10.1038/nsb1195-999 Occurrence Handle1:CAS:528:DyaK2MXptlegtrg%3D

    Article  CAS  Google Scholar 

  • G.J. Sharman S.R. Griffiths-Jones M. Jourdan M.S. Searle (2001) J. Am. Chem. Soc. 123 12318–12324 Occurrence Handle10.1021/ja0116369 Occurrence Handle1:CAS:528:DC%2BD3MXotlKktbs%3D

    Article  CAS  Google Scholar 

  • G.J. Sharman M.S. Searle (1998) J. Am. Chem. Soc. 120 5291–5300 Occurrence Handle10.1021/ja9705405 Occurrence Handle1:CAS:528:DyaK1cXivFCjtLo%3D

    Article  CAS  Google Scholar 

  • B.L. Sibanda J.M. Thornton (1991) Methods Enzymol. 202 59–82 Occurrence Handle1:CAS:528:DyaK38Xht1CgsrY%3D

    CAS  Google Scholar 

  • F.A. Syud J.F. Espinosa S.H. Gellman (1999) J. Am. Chem. Soc. 121 IssueID49 11577–11578 Occurrence Handle10.1021/ja992733t Occurrence Handle1:CAS:528:DyaK1MXnsFymsbc%3D

    Article  CAS  Google Scholar 

  • F.A. Syud H.E. Stanger S.H. Gellman (2001) J. Am. Chem. Soc. 123 8667–8677 Occurrence Handle10.1021/ja0109803 Occurrence Handle1:CAS:528:DC%2BD3MXlvFynu7s%3D

    Article  CAS  Google Scholar 

  • F.A. Syud H.E. Stanger H.S. Mortell J.F. Espinosa J.D. Fisk C.G. Fry S.H. Gellman (2003) J. Mol. Bio. 326 553–568 Occurrence Handle1:CAS:528:DC%2BD3sXmt1WksA%3D%3D

    CAS  Google Scholar 

  • C.D. Tatko M.L. Waters (2003) Protein Sci 12 2443–2452 Occurrence Handle10.1110/ps.03284003 Occurrence Handle1:CAS:528:DC%2BD3sXosleltbc%3D

    Article  CAS  Google Scholar 

  • C.D. Tatko M.L. Waters (2004) Protein Sci. 13 2515–2522 Occurrence Handle10.1110/ps.04820104 Occurrence Handle1:CAS:528:DC%2BD2cXnt1elu74%3D

    Article  CAS  Google Scholar 

  • M. Trabi H.J. Schirra D.J. Craik (2001) Biochemistry 40 4211–4221 Occurrence Handle10.1021/bi002028t Occurrence Handle1:CAS:528:DC%2BD3MXhvVSgsb8%3D

    Article  CAS  Google Scholar 

  • G. Wagner A. Pardi K. Wuthrich (1983) J. Am. Chem. Soc. 105 5948–5949 Occurrence Handle10.1021/ja00356a056 Occurrence Handle1:CAS:528:DyaL3sXltVWisbo%3D

    Article  CAS  Google Scholar 

  • D.S. Wishart C.G. Bigam A. Holm R.S. Hodges B.D. Sykes (1995) J. Biomol. NMR 5 IssueID1 67–81 Occurrence Handle1:CAS:528:DyaK2MXjtlyju7o%3D

    CAS  Google Scholar 

  • D.S. Wishart B.D. Sykes (1994) Methods Enzymol. 239 363–392 Occurrence Handle1:CAS:528:DyaK2MXktlegsLg%3D

    CAS  Google Scholar 

  • D.S. Wishart B.D. Sykes F.M. Richards (1991) J. Mol. Bio. 222 IssueID2 311–333 Occurrence Handle1:CAS:528:DyaK38Xhsl2guw%3D%3D

    CAS  Google Scholar 

  • X.P. Xu D.A. Case (2001) J. Biomol. NMR 21 IssueID4 321–333 Occurrence Handle10.1023/A:1013324104681 Occurrence Handle1:CAS:528:DC%2BD38XptVyluw%3D%3D

    Article  CAS  Google Scholar 

  • X.P. Xu D.A. Case (2002) Biopolymers 65 408–423 Occurrence Handle1:CAS:528:DC%2BD38Xpt1eku70%3D

    CAS  Google Scholar 

  • Y. Xu R. Oyola F. Gai (2003) J. Am. Chem. Soc. 125 15388–15394 Occurrence Handle1:CAS:528:DC%2BD3sXptVKrt78%3D

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niels H. Andersen.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fesinmeyer, R.M., Hudson, F.M., Olsen, K.A. et al. Chemical Shifts Provide Fold Populations and Register of β Hairpins and β Sheets. J Biomol NMR 33, 213–231 (2005). https://doi.org/10.1007/s10858-005-3731-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-005-3731-7

Keywords

Navigation