Journal of Biomolecular NMR

, Volume 32, Issue 1, pp 41–54 | Cite as

Error estimation and global fitting in transverse-relaxation dispersion experiments to determine chemical-exchange parameters

  • Rieko Ishima
  • Dennis A. Torchia


Off-resonance effects can introduce significant systematic errors in R2 measurements in constant-time Carr-Purcell-Meiboom-Gill (CPMG) transverse relaxation dispersion experiments. For an off-resonance chemical shift of 500 Hz, 15N relaxation dispersion profiles obtained from experiment and computer simulation indicated a systematic error of ca. 3%. This error is three- to five-fold larger than the random error in R2 caused by noise. Good estimates of total R2 uncertainty are critical in order to obtain accurate estimates in optimized chemical exchange parameters and their uncertainties derived from χ2 minimization of a target function. Here, we present a simple empirical approach that provides a good estimate of the total error (systematic + random) in 15N R2 values measured for the HIV protease. The advantage of this empirical error estimate is that it is applicable even when some of the factors that contribute to the off-resonance error are not known. These errors are incorporated into a χ2 minimization protocol, in which the Carver–Richards equation is used fit the observed R2 dispersion profiles, that yields optimized chemical exchange parameters and their confidence limits. Optimized parameters are also derived, using the same protein sample and data-fitting protocol, from 1H R2 measurements in which systematic errors are negligible. Although 1H and 15N relaxation profiles of individual residues were well fit, the optimized exchange parameters had large uncertainties (confidence limits). In contrast, when a single pair of exchange parameters (the exchange lifetime, τex, and the fractional population, pa), were constrained to globally fit all R2 profiles for residues in the dimer interface of the protein, confidence limits were less than 8% for all optimized exchange parameters. In addition, F-tests showed that quality of the fits obtained using τex, pa as global parameters were not improved when these parameters were free to fit the R2 profiles of individual residues. Finally, nearly the same optimized global τex, pa values were obtained, when the 1H and 15N data sets for residues in the dimer interface, were fit independently; the difference in optimized global parameters, ca. 10%, was of marginal significance according to the F-test.


conformational change chemical exchange CPMG NMR R2 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Carver, J.P., Richards, R.E. 1972J. Magn. Reson.689105Google Scholar
  2. Czisch, M., King, G.C., Ross, A. 1997J. Magn. Reson.126154157CrossRefPubMedGoogle Scholar
  3. Davis, D.G., Perlman, M.E., London, R.E. 1994J. Magn. Reson. B104266275CrossRefPubMedGoogle Scholar
  4. Delaglio, F., Grzesiek, S., Vuister, G.W., Zhu, G., Pfeifer, J., Bax, A. 1995J. Biomol. NMR6277293CrossRefPubMedGoogle Scholar
  5. Ernst, R.R., Bodenhausen, G., Wokaun, A. 1987Principles of Nuclear Magnetic Resonance in One and Two DimensionsClarendon PressOxfordGoogle Scholar
  6. Garrett, D.S., Powers, R., Gronenborn, A.M., Clore, G.M. 1991J. Magn. Reson.95214220Google Scholar
  7. Geen, H., Freeman, R. 1991J. Mag. Reson.9393141Google Scholar
  8. Guenneugues, M.P.B., Desvaux, H. 1999J. Magn. Reson.136118126CrossRefPubMedGoogle Scholar
  9. Ishima, R., Wingfield, P.T., Stahl, S.J., Kaufman, J.D., Torchia, D.A. 1998J. Am. Chem. Soc.1201053410542CrossRefGoogle Scholar
  10. Ishima, R., Freedberg, D.I., Wang, Y.X., Louis, J.M., Torchia, D.A. 1999Structure710471055CrossRefPubMedGoogle Scholar
  11. Ishima, R., Torchia, D.A. 2003J. Biomol. NMR25243348CrossRefPubMedGoogle Scholar
  12. Ishima, R., Baber, J., Louis, J.M., Torchia, D.A. 2004J. Biomol. NMR29187198CrossRefPubMedGoogle Scholar
  13. Jones, J.A., Hodgkinson, P., Barker, A.L., Hore, P.L. 1996J. Magn. Reson. Ser. B.1132534CrossRefGoogle Scholar
  14. Jones, J.A. 1997J. Magn. Reson126283286CrossRefGoogle Scholar
  15. Katoh, E., Louis, J.M., Yamazaki, T., Gronenborn, A.M., Torchia, D.A., Ishima, R. 2003Protein Sci.1213761385CrossRefPubMedGoogle Scholar
  16. Korzhnev, D., Tischenko, E.V., Arseniev, A.S. 2000J. Biomol. NMR17231237CrossRefPubMedGoogle Scholar
  17. Korzhnev, D.M., Salvatella, X., Vendruscolo, M., Di Nardo, A.A., Davidson, A.R., Dobson, C.M., Kay, L.E. 2004Nature430586590CrossRefPubMedGoogle Scholar
  18. Loria, J.P., Rance, M., Palmer, A.G.,III 1999J. Am. Chem. Soc.12123312332CrossRefGoogle Scholar
  19. Louis, J.M., Ishima, R., Nesheiwat, I., Pannell, L.K., Lynch, S.M., Torchia, D.A. and Gronenborn, A.M. (2002) J. Biol. Chem.Google Scholar
  20. Mulder, F.A.A., Skrynnikov, N.R., Hon, B., Dahlquist, F.W., Kay, L.E. 2001J. Am. Chem. Soc.123967975CrossRefPubMedGoogle Scholar
  21. Mulder, F.A.A., Hon, B., Mittermaier, A., Dahlquist, F.W., Kay, L.E. 2002J. Am. Chem. Soc.12414431451CrossRefPubMedGoogle Scholar
  22. Nicholson, L.K., Kay, L.E. and Torchia, D.A. (1996). In NMR Spectrocsopy and its Application to Biomedical Research. Sarkar, S.K. (Eds.), Elsevier, Amsterdam, pp. 241–279.Google Scholar
  23. Orekhov, V.Y., Pervushin, K.V., Arseniev, A.S. 1994Eur. J. Biochem.219887896CrossRefPubMedGoogle Scholar
  24. Palmer, A.G.,III, Kroenke, C.D., Loria, J.P. 2001Methods in Enzymology339204238PubMedGoogle Scholar
  25. Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T. 1988Numerical Recipes in CCambridge University PressCambridge U.KGoogle Scholar
  26. Ross, A., Czisch, M., King, G.C. 1997J. Magn. Reson124355365CrossRefGoogle Scholar
  27. Skrynnikov, N.R., Mulder, F.A.A., Hon, B., Dahlquist, F.W., Kay, L.E. 2001J. Am. Chem. Soc.12345564566CrossRefPubMedGoogle Scholar
  28. Tollinger, M., Skrynnikov, N.R., Mulder, F.A.A., Forman–Kay, J.D., Kay, L.E. 2001J. Am. Chem. Soc.1231134111352CrossRefPubMedGoogle Scholar
  29. Trott, O., Palmer, A.G.,III 2004J. Magn. Reson.170104112CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Molecular Structural Biology UnitNational Institute of Dental and Craniofacial Research, National Institutes of HealthBethesdaUSA

Personalised recommendations