Skip to main content
Log in

Secondary structural effects on protein NMR chemical shifts

  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

For an amino acid in protein, its chemical shift, δ(ϕ, ψ)s, is expressed as a function of its backbone torsion angles (ϕ and ψ) and secondary state (s): δ(ϕ, ψ)s=δϕ, ψ)_coil+Δδ(ϕ, ψ)_s, where δ(ϕ, ψ)coil represents its chemical shift at coil state (s=coil); Δ δ(ϕ, ψ)s (s=sheet or helix) is herein defined as secondary structural effect correction factor, which are quantitatively determined from Residue-specific Secondary Structure Shielding Surface (RSS) for 13CO, 13Cα, 13Cβ,1Hα, 15N, and 1HN nuclei. The secondary structural effect correction factors defined in this study differ from those in earlier investigations by separating out the backbone conformational effects. As a consequence, their magnitudes are significantly smaller than those earlier reported. The present Δ δ(ϕ, ψ)sheet and Δ δ(ϕ, ψ)helix were found varying little with backbone conformation and the 20 amino acids, specifically for 13CO, 13Cα, and 1Hα nuclei. This study also carries out some useful investigations on other chemical shift prediction approaches – the traditional shielding surfaces, SHIFTS, SHIFTX, PROSHIFT, and identifies some unexpected shortcomings with these methods. It provides some useful insights into understanding protein chemical shifts and suggests a new route to improving chemical shifts prediction. The RSS surfaces were incorporated into the program PRSI [Wang and Jardetzky, J. Biomol. NMR, 28: 327–340 (2004)], which is available for academic users at http://www.pronmr.com or by sending email to the author (yunjunwang@yahoo.com).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • R. Aurora G.D. Rose (1998) Protein Sci. 7 21–38

    Google Scholar 

  • R.D. Beger P.H. Bolton (1997) J. Biomol. NMR 10 129–142

    Google Scholar 

  • B. Celda C. Biamonti M.J. Arnau R. Tejero G.T. Montelione (1995) J. Biomol. NMR 5 161–172

    Google Scholar 

  • G. Cornilescu F. Delaglio A. Bax (1999) J. Biomol. NMR 13 289–302 Occurrence Handle10.1023/A:1008392405740

    Article  Google Scholar 

  • A.C. Dios Particlede J.G. Pearson E. Oldfield (1993) Science 260 1491–1495

    Google Scholar 

  • M. Iwadate T. Asakura M.P. Williamson (1999) J. Biomol. NMR 13 199–211

    Google Scholar 

  • J. Kuszewski A.M. Gronenborn G.M. Clore (1995) ArticleTitleJ. Magn. Reson. B 107 293–297

    Google Scholar 

  • H. Le E. Oldfield (1994) J. Biomol. NMR 4 341–348

    Google Scholar 

  • J.L. Markley D.H. Meadows O. Jardetzky (1967) J. Mol. Biol. 27 25–40

    Google Scholar 

  • J. Meiler (2003) J. Biomol. NMR 26 25–37

    Google Scholar 

  • A. Nakamura O. Jardetzky (1968) Biochemistry 7 1226–1230

    Google Scholar 

  • S. Neal A.M. Nip H. Zhang D.S. Wishart (2003) J. Biomol. NMR 26 215–240

    Google Scholar 

  • E. Oldfield (1995) J. Biomol. NMR 5 217–225

    Google Scholar 

  • K. Osapay D.A. Case (1994) J. Biomol. NMR 4 215–230

    Google Scholar 

  • G.C. Roberts O. Jardetzky (1970) Adv. Protein Chem. 24 447–545

    Google Scholar 

  • S. Spera A. Bax (1991) J. Am. Chem. Soc. 113 5490–5492

    Google Scholar 

  • L. Szilagyi O. Jardetzky (1989) J. Magn. Reson. 83 441–449

    Google Scholar 

  • Y. Wang O. Jardetzky (2002a) Protein Sci. 11 852–861

    Google Scholar 

  • Y. Wang O. Jardetzky (2002b) J. Am. Chem. Soc. 124 14075–14084

    Google Scholar 

  • Y. Wang O. Jardetzky (2004) J. Biomol. NMR 28 327–340

    Google Scholar 

  • L. Willard A. Ranjan H. Zhang H. Monzavi R.F. Boyko B.D. Sykes D.S. Wishart (2003) Nucl. Acids Res. 31 3316–3319

    Google Scholar 

  • M.P. Williamson J. Kikuchi T. Asakura (1995) J. Mol. Biol. 247 541–546

    Google Scholar 

  • D.S. Wishart D.A. Case (2001) Meth. Enzymol. 338 3–34

    Google Scholar 

  • D.S. Wishart A.M. Nip (1998) Biochem. Cell Biol. 76 1–10

    Google Scholar 

  • D.S. Wishart B.D. Sykes (1994) J. Biomol. NMR 4 171–180

    Google Scholar 

  • D.S. Wishart C.G. Bigam A. Holm R.S. Hodges B.D. Sykes (1995) J. Biomol. NMR 5 67–81

    Google Scholar 

  • D.S. Wishart B.D. Sykes F.M. Richards (1991) J. Mol. Biol. 222 311–333

    Google Scholar 

  • D.S. Wishart B.D. Sykes F.M. Richards (1992) Biochemistry 31 1647–1651

    Google Scholar 

  • X-P. Xu D.A. Case (2001) J. Biomol. NMR 21 321–333

    Google Scholar 

  • X-P. Xu D.A. Case (2002) Biopolmers 65 215–240

    Google Scholar 

  • H. Zhang S. Neal D.S. Wishart (2003) J. Biomol. NMR 25 173–195

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunjun Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y. Secondary structural effects on protein NMR chemical shifts. J Biomol NMR 30, 233–244 (2004). https://doi.org/10.1007/s10858-004-3098-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-004-3098-1

Keywords

Navigation