Recovery of motor function after traumatic spinal cord injury by using plasma-synthesized polypyrrole/iodine application in combination with a mixed rehabilitation scheme

Abstract

Traumatic spinal cord injury (TSCI) can cause paralysis and permanent disability. Rehabilitation (RB) is currently the only accepted treatment, although its beneficial effect is limited. The development of biomaterials has provided therapeutic possibilities for TSCI, where our research group previously showed that the plasma-synthesized polypyrrole/iodine (PPy/I), a biopolymer with different physicochemical characteristics than those of the PPy synthesized by conventional methods, promotes recovery of motor function after TSCI. The present study evaluated if the plasma-synthesized PPy/I applied in combination with RB could increase its beneficial effects and the mechanisms involved. Adult rats with TSCI were divided into no treatment (control); biopolymer (PPy/I); mixed RB by swimming and enriched environment (SW/EE); and combined treatment (PPy/I + SW/EE) groups. Eight weeks after TSCI, the general health of the animals that received any of the treatments was better than the control animals. Functional recovery evaluated by two scales was better and was achieved in less time with the PPy/I + SW/EE combination. All treatments significantly increased βIII-tubulin (nerve plasticity) expression, but only PPy/I increased GAP-43 (nerve regeneration) and MBP (myelination) expression when were analyzed by immunohistochemistry. The expression of GFAP (glial scar) decreased in treated groups when determined by histochemistry, while morphometric analysis showed that tissue was better preserved when PPy/I and PPy/I + SW/EE were administered. The application of PPy/I + SW/EE, promotes the preservation of nervous tissue, and the expression of molecules related to plasticity as βIII-tubulin, reduces the glial scar, improves general health and allows the recovery of motor function after TSCI.

The implant of the biomaterial polypyrrole/iodine (PPy/I) synthesized by plasma (an unconventional synthesis method), in combination with a mixed rehabilitation scheme with swimming and enriched environment applied after a traumatic spinal cord injury, promotes expression of GAP-43 and βIII-tubulin (molecules related to plasticity and nerve regeneration) and reduces the expression of GFAP (molecule related to the formation of the glial scar). Both effects together allow the formation of nerve fibers, the reconnection of the spinal cord in the area of injury and the recovery of lost motor function. The figure shows the colocalization (yellow) of βIII-tubilin (red) and GAP-43 (green) in fibers crossing the epicenter of the injury (arrowheads) that reconnect the rostral and caudal ends of the injured spinal cord and allowed recovery of motor function.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Burns AS, O’Connell C. The challenge of spinal cord injury care in the developing world. J Spinal Cord Med. 2012;35:3–8. https://doi.org/10.1179/2045772311Y.0000000043.

    Article  Google Scholar 

  2. 2.

    Singh A, Tetreault L, Kalsi-Ryan S, Nouri A, Fehlings MG. Global prevalence and incidence of traumatic spinal cord injury. Clin Epidemiol. 2014;6:309.

    Google Scholar 

  3. 3.

    Hachem LD, Ahuja CS, Fehlings MG. Assessment and management of acute spinal cord injury: from point of injury to rehabilitation. J Spinal Cord Med. 2017;40:665–75. https://doi.org/10.1080/10790268.2017.1329076.

    Article  Google Scholar 

  4. 4.

    Sandrow-Feinberg HR, Houle JD. Exercise after spinal cord injury as an agent for neuroprotection, regeneration and rehabilitation. Brain Res. 2015;1619:12–21. https://doi.org/10.1016/j.brainres.2015.03.052.

    CAS  Article  Google Scholar 

  5. 5.

    Tashiro S, Shinozaki M, Mukaino M, Renault-Mihara F, Toyama Y, Liu M, et al. BDNF induced by treadmill training contributes to the suppression of spasticity and allodynia after spinal cord injury via upregulation of KCC2. Neurorehabil Neural Repair. 2015;29:677–89. https://doi.org/10.1177/1545968314562110.

    Article  Google Scholar 

  6. 6.

    Wang T, Yu DR, Huang J, Liu Q, Wang DX, Luo N, et al. Multimodal rehabilitation program promotes motor function recovery of rats after ischemic stroke by upregulating expressions of GAP-43, SYN, HSP70, and C-MYC. J Stroke Cerebrovasc Dis. 2018;27:2829–39. https://doi.org/10.1016/j.jstrokecerebrovasdis.2018.06.018.

    Article  Google Scholar 

  7. 7.

    Cheng J, Shen W, Jin L, Pan J, Zhou Y, Pan G, et al. Treadmill exercise promotes neurogenesis and myelin repair via upregulating Wnt/β catenin signaling pathways in the juvenile brain following focal cerebral ischemia/reperfusion. Int J Mol Med. 2020;45:1447

    Google Scholar 

  8. 8.

    Seo JH, Kim H, Park ES, Lee JE, Kim DW, Kim HO, et al. Environmental enrichment synergistically improves functional recovery by transplanted adipose stem cells in chronic hypoxic-ischemic brain injury. Cell Transplant.2013;22:1553–68. https://doi.org/10.3727/096368912X662390.

    Article  Google Scholar 

  9. 9.

    Pak ME, Jung DH, Lee HJ, Shin MJ, Kim SY, Shin YB, et al. Combined therapy involving electroacupuncture and treadmill exercise attenuates demyelination in the corpus callosum by stimulating oligodendrogenesis in a rat model of neonatal hypoxia-ischemia. Exp Neurol.2018;300:222–31. https://doi.org/10.1016/j.expneurol.2017.11.014.

    Article  Google Scholar 

  10. 10.

    Robert AA, Ibrahim Al Jadid MS, Bin Afif S, Abdulmohsen Al Sowyed A, Al-Mubarak S. The effects of different rehabilitation strategies on the functional recovery of spinal cord injured rats: an experimental study. Spine. 2010;35:E1273–7. https://doi.org/10.1097/BRS.0b013e3181e3fc5f.

    Article  Google Scholar 

  11. 11.

    Smith RR, Shum-Siu A, Baltzley R, Bunger M, Baldini A, Burke DA, et al. Effects of swimming on functional recovery after incomplete spinal cord injury in rats. J Neurotrauma. 2006a;23:908–19. https://doi.org/10.1089/neu.2006.23.908.

    Article  Google Scholar 

  12. 12.

    Heywood S, McClelland J, Mentiplay B, Geigle P, Rahmann A, Clark R. Effectiveness of aquatic exercise in improving lower limb strength in musculoskeletal conditions: a systematic review and meta-analysis. Arch Phys Med Rehabil. 2017;98:173–86. https://doi.org/10.1016/j.apmr.2016.08.472.

    Article  Google Scholar 

  13. 13.

    Hutchinson KJ, Gómez‐Pinilla F, Crowe MJ, Ying Z, Basso DM. Three exercise paradigms differentially improve sensory recovery after spinal cord contusion in rats. Brain 2004;127:1403–14. https://doi.org/10.1093/brain/awh160.

    Article  Google Scholar 

  14. 14.

    Berrocal Y, Pearse DD, Singh A, Andrade CM, McBroom JS, Puentes R, et al. Social and environmental enrichment improves sensory and motor recovery after severe contusive spinal cord injury in the rat. J Neurotrauma. 2007;24:1761–72. https://doi.org/10.1089/neu.2007.0327.

    Article  Google Scholar 

  15. 15.

    Steeves JD, Tuszynski JW, Lammertse MH, Curte D, Ditunno A, Ellaway JF. et al. Experimental treatments for spinal cord injury: What you should know if you are considering particiation in a clinical trial. International camping for cures of spinal cord injury paralysis. 2012;2:2–35.

    Google Scholar 

  16. 16.

    Smith RR, Brown EH, Shum-Siu A, Whelan A, Burke DA, Benton RL, et al. Swim training initiated acutely after spinal cord injury is ineffective and induces extravasation in and around the epicenter. J Neurotrauma. 2009;26. https://doi.org/10.1089/neu.2008-0829.

  17. 17.

    Kataoka K, Suzuki Y, Kitada M, Hashimoto T, Chou H, Bai H, et al. Alginate enhances elongation of early regenerating axons in spinal cord of young rats. Tissue Eng. 2004;10:493–504. https://doi.org/10.1089/107632704323061852.

    CAS  Article  Google Scholar 

  18. 18.

    Suzuki H, Kanchiku T, Imajo Y, Yoshida Y, Nishida N, Gondo T, et al. Artificial collagen-filament scaffold promotes axon regeneration and long tract reconstruction in a rat model of spinal cord transection. Med Mol Morphol. 2015;48:214–24. https://doi.org/10.1007/s00795-015-0104-5.

    CAS  Article  Google Scholar 

  19. 19.

    Khatun F, King V, Alovskaya A, Brown R, Priestley JV. Fibronectin based biomaterials as a treatment for spinal cord injury. Tissue Eng.2007;13:1697

    Google Scholar 

  20. 20.

    Wen Y, Yu S, Wu Y, Ju R, Wang H, Liu Y, et al. Spinal cord injury repair by implantation of structured hyaluronic acid scaffold with PLGA microspheres in the rat. Cell Tissue Res. 2016;364:17–28. https://doi.org/10.1007/s00441-015-2298-1.

    CAS  Article  Google Scholar 

  21. 21.

    Han S, Lee JY, Heo EY, Kwon IK, Yune TY, Youn I. Implantation of a matrigel-loaded agarose scaffold promotes functional regeneration of axons after spinal cord injury in rat. Biochem Biophys Res Commun. 2018;496:785–91. https://doi.org/10.1016/j.bbrc.2018.01.157.

    CAS  Article  Google Scholar 

  22. 22.

    Ren S, Liu Z, Yoon Kim C, Fu K, Wu Q, Hou L. et al. Reconstruction of the spinal cord of spinal transected dogs with polyethylene glycol. Surg Neurol Int. 2019;10:50

    Article  Google Scholar 

  23. 23.

    Chen BK, Knight AM, Madigan NN, Gross L, Dadsetan M, Nesbitt JJ, et al. Comparison of polymer scaffolds in rat spinal cord: a step toward quantitative assessment of combinatorial approaches to spinal cord repair. Biomaterials. 2011;32:8077–86. https://doi.org/10.1016/j.biomaterials.2011.07.029.

    CAS  Article  Google Scholar 

  24. 24.

    Sun F, Shi T, Zhou T, Dong D, Xie J, Wang R, et al. 3D poly(Lactic-co-glycolic acid) scaffolds for treating spinal cord injury. J Biomed Nanotechnol. 2017;13:290–302. https://doi.org/10.1166/jbn.2017.2348.

    CAS  Article  Google Scholar 

  25. 25.

    Wu W, Lee S-Y, Wu X, Tyler JY, Wang H, Ouyang Z, et al. Neuroprotective ferulic acid (FA)–glycol chitosan (GC) nanoparticles for functional restoration of traumatically injured spinal cord. Biomaterials. 2014;35:2355–64. https://doi.org/10.1016/j.biomaterials.2013.11.074.

    CAS  Article  Google Scholar 

  26. 26.

    Chedly J, Soares S, Montembault A, von Boxberg Y, Veron-Ravaille M, Mouffle C, et al. Physical chitosan microhydrogels as scaffolds for spinal cord injury restoration and axon regeneration. Biomaterials. 2017;138:91–107. https://doi.org/10.1016/j.biomaterials.2017.05.024.

    CAS  Article  Google Scholar 

  27. 27.

    Gros T, Sakamoto JS, Blesch A, Havton LA, Tuszynski MH. Regeneration of long-tract axons through sites of spinal cord injury using templated agarose scaffolds. Biomaterials. 2010;31:6719–29. https://doi.org/10.1016/j.biomaterials.2010.04.035.

    CAS  Article  Google Scholar 

  28. 28.

    Führmann T, Tam RY, Ballarin B, Coles B, Elliott Donaghue I, van der Kooy D, et al. Injectable hydrogel promotes early survival of induced pluripotent stem cell-derived oligodendrocytes and attenuates longterm teratoma formation in a spinal cord injury model. Biomaterials. 2016;83:23–36. https://doi.org/10.1016/j.biomaterials.2015.12.032.

    CAS  Article  Google Scholar 

  29. 29.

    Hejcl A, Ruzicka J, Kekulova K, Svobodova B, Proks V, Mackova H, et al. Modified methacrylate hydrogels improve tissue repair after spinal cord injury. Int J Mol Sciences. 2018;19. https://doi.org/10.3390/ijms19092481.

  30. 30.

    Olayo R, Ríos C, Salgado-Ceballos H, Cruz GJ, Morales J, Olayo MG, et al. Tissue spinal cord response in rats after implants of polypyrrole and polyethylene glycol obtained by plasma. J Mater Sci Mater Med. 2008;19:817–26. https://doi.org/10.1007/s10856-007-3080-z.

    CAS  Article  Google Scholar 

  31. 31.

    Cruz GJ, Mondragon-Lozano R, Diaz-Ruiz A, Manjarrez J, Olayo R, Salgado-Ceballos H, et al. Plasma polypyrrole implants recover motor function in rats after spinal cord transection. J Mater Sci Mater Med. 2012;23:2583–92. https://doi.org/10.1007/s10856-012-4715-2.

    CAS  Article  Google Scholar 

  32. 32.

    Mondragon-Lozano R, Rios C, Roldan-Valadez E, Cruz GJ, Olayo MG, Olayo R, et al. Delayed injection of polypyrrole doped with iodine particle suspension after spinal cord injury in rats improves functional recovery and decreased tissue damage evaluated by 3.0 Tesla in vivo magnetic resonance imaging. Spine J. 2017;17:562–73. https://doi.org/10.1016/j.spinee.2016.02.012.

    Article  Google Scholar 

  33. 33.

    Álvarez-Mejía L, Salgado-Ceballos H, Olayo R, Cruz GJ, Olayo MG, Díaz-Ruiz A, et al. Effect of pyrrole implants synthesized by different methods on spinal cord injuries of rats. Rev Mexicana de Ingía Biomédica. 2015a;36:7–21.

    Google Scholar 

  34. 34.

    Council NR. Guide for the care and use of laboratory animals: Eighth Edition. Washington, DC: The National Academies Press; 2011.

  35. 35.

    Kilkenny C, Browne W, Cuthill IC, Emerson M, Altman DG. Animal research: reporting in vivo experiments: The ARRIVE guidelines. Br J Pharmacol. 2010;160:1577–9. https://doi.org/10.1111/j.1476-5381.2010.00872.x.

    CAS  Article  Google Scholar 

  36. 36.

    NOM-062-ZOO-1999. Específicaciones técnicas para la producción, cuidado y uso de los animales de laboratorio. Diario Oficial de la Federación. 1999;1–57.

  37. 37.

    Magnuson DS, Smith RR, Brown EH, Enzmann G, Angeli C, Quesada PM. et al. Swimming as a model of task-specific locomotor retraining after spinal cord injury in the rat. Neurorehabil Neural Repair. 2009;23:535–45.

    Article  Google Scholar 

  38. 38.

    Piao C-S, Stoica BA, Wu J, Sabirzhanov B, Zhao Z, Cabatbat R, et al. Late exercise reduces neuroinflammation and cognitive dysfunction after traumatic brain injury. Neurobiol Dis. 2013;54:252–63.

    Article  Google Scholar 

  39. 39.

    Guerra JL, Saavedra JLM. Manual de fisioterapia. México: El Manual Moderno. 2004.

  40. 40.

    van Praag H, Kempermann G, Gage FH. Neural consequences of enviromental enrichment. Nat Rev Neurosci. 2000;1:191–8.

    Article  Google Scholar 

  41. 41.

    Basso DM, Beattie MS, Bresnahan JC. A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma. 1995;12:1–21. https://doi.org/10.1089/neu.1995.12.1.

    CAS  Article  Google Scholar 

  42. 42.

    Basso DM, Beattie MS, Bresnahan JC, Anderson DK, Faden AI, Gruner JA, et al. MASCIS evaluation of open field locomotor scores: effects of experience and teamwork on reliability. J Neurotrauma. 1996;13:343–59. https://doi.org/10.1089/neu.1996.13.343.

    CAS  Article  Google Scholar 

  43. 43.

    Smith RR, Burke DA, Baldini AD, Shum-Siu A, Baltzley R, Bunger M, et al. The louisville swim scale: a novel assessment of hindlimb function following spinal cord injury in adult rats. J neurotrauma. 2006b;23:1654–70. https://doi.org/10.1089/neu.2006.23.1654.

    Article  Google Scholar 

  44. 44.

    NOM-033-ZOO-1995. Sacrificio humanitario de los animales, Diario Oficial de la Federación. 1995;1–17.

  45. 45.

    NOM-033-SAG/ZOO-2014. Métodos para dar muerte a los animales domésticos y silvestres. Diario Oficial de la Federación. 2015. LEX-FAOC148241.

  46. 46.

    Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nat Meth. 2012;9:676–82.

    CAS  Article  Google Scholar 

  47. 47.

    Baschong W, Suetterlin R, Laeng RH. Control of autofluorescence of archival formaldehyde-fixed, paraffin-embedded tissue in confocal laser scanning microscopy (CLSM). The journal of histochemistry and cytochemistry: official journal of the Histochemistry. Society 2001;49:1565–72. https://doi.org/10.1177/002215540104901210.

    CAS  Article  Google Scholar 

  48. 48.

    Woerly S, Doan VD, Sosa N, de Vellis J, Espinosa‐Jeffrey A. Prevention of gliotic scar formation by NeuroGel™ allows partial endogenous repair of transected cat spinal cord. J Neurosci Res. 2004;75:262–72.

    CAS  Article  Google Scholar 

  49. 49.

    Alvarez-Mejia L, Morales J, Cruz GJ, Olayo M-G, Olayo R, Díaz-Ruíz A, et al. Functional recovery in spinal cord injured rats using polypyrrole/iodine implants and treadmill training. J Mater Sci: Mater Med. 2015b;26:1–11.

    CAS  Google Scholar 

  50. 50.

    Przekora A. Current trends in fabrication of biomaterials for bone and cartilage regeneration: materials modifications and biophysical stimulations. Int J Mol Sci. 2019;20:435. https://doi.org/10.3390/ijms20020435.

    CAS  Article  Google Scholar 

  51. 51.

    Kostov KG, Nishime TMC, Castro AHR, Toth A. Hein LRdO. Surface modification of polymeric materials by cold atmospheric plasma jet. Appl Surf Sci. 2014;314:367–75.

    CAS  Article  Google Scholar 

  52. 52.

    Sagbas B. Argon/oxygen plasma surface modification of biopolymers for improvement of wettability and wear resistance. Age. 2016;7:46.

    Google Scholar 

  53. 53.

    Jordá-Vilaplana A, Fombuena V, García-García D, Samper M, Sánchez-Nácher L. Surface modification of polylactic acid (PLA) by air atmospheric plasma treatment. Eur Polym J. 2014;58:23–33.

    Article  Google Scholar 

  54. 54.

    Wang M, Favi P, Cheng X, Golshan NH, Ziemer KS, Keidar M, et al. Cold atmospheric plasma (CAP) surface nanomodified 3D printed polylactic acid (PLA) scaffolds for bone regeneration. Acta Biomater. 2016;46:256–65.

    CAS  Article  Google Scholar 

  55. 55.

    Griffin M, Ibrahim A, Seifalian A, Butler P, Kalaskar D, Ferretti P. Chemical group-dependent plasma polymerisation preferentially directs adipose stem cell differentiation towards osteogenic or chondrogenic lineages. Acta Biomater. 2017;50:450–61.

    CAS  Article  Google Scholar 

  56. 56.

    Chen TF, Siow KS, Ng PY, Majlis BY. Enhancing the biocompatibility of the polyurethane methacrylate and off-stoichiometry thiol-ene polymers by argon and nitrogen plasma treatment. Mater Sci Eng C. 2017;79:613–21.

    CAS  Article  Google Scholar 

  57. 57.

    Rusanescu G. Adult spinal cord neurogenesis: a regulator of nociception. Neurogenesis. 2016;3:e1256853.

    Article  Google Scholar 

  58. 58.

    Meletis K, Barnabe-Heider F, Carlen M, Evergren E, Tomilin N, Shupliakov O, et al. Spinal cord injury reveals multilineage differentiation of ependymal cells. PLoS Biol. 2008;6:e182 https://doi.org/10.1371/journal.pbio.0060182.

    CAS  Article  Google Scholar 

  59. 59.

    Decimo I, Bifari F, Rodriguez FJ, Malpeli G, Dolci S, Lavarini V, et al. Nestin‐and doublecortin‐positive cells reside in adult spinal cord meninges and participate in injury‐induced parenchymal reaction. Stem Cell. 2011;29:2062–76.

    CAS  Article  Google Scholar 

  60. 60.

    Griffin M, Palgrave R, Baldovino-Medrano VG, Butler PE, Kalaskar DM. Argon plasma improves the tissue integration and angiogenesis of subcutaneous implants by modifying surface chemistry and topography. Int J Nanomed. 2018;13:6123.

    CAS  Article  Google Scholar 

  61. 61.

    Fu J, Wang H, Deng L, Li J. Exercise training promotes functional recovery after spinal cord injury. Neural Plast. 2016;2016:4039580. https://doi.org/10.1155/2016/4039580.

    Article  Google Scholar 

  62. 62.

    Muir GD, Steeves JD. Phasic cutaneous input facilitates locomotor recovery after incomplete spinal injury in the chick. J Neurophysiol. 1995;74:358–68. https://doi.org/10.1152/jn.1995.74.1.358.

    CAS  Article  Google Scholar 

  63. 63.

    Fischer FR, Peduzzi JD. Functional recovery in rats with chronic spinal cord injuries after exposure to an enriched environment. J Spinal Cord Med. 2007;30:147–55. https://doi.org/10.1080/10790268.2007.11753926.

    Article  Google Scholar 

  64. 64.

    Keyvani K, Sachser N, Witte OW, Paulus W. Gene expression profiling in the intact and injured brain following environmental enrichment. J Neuropathol Exp Neurol. 2004;63:598–609. https://doi.org/10.1093/jnen/63.6.598.

    CAS  Article  Google Scholar 

  65. 65.

    Birch AM, McGarry NB, Kelly ÁM. Short‐term environmental enrichment, in the absence of exercise, improves memory, and increases NGF concentration, early neuronal survival, and synaptogenesis in the dentate gyrus in a time‐dependent manner. Hippocampus. 2013;23:437–50.

    CAS  Article  Google Scholar 

  66. 66.

    Nithianantharajah J, Hannan AJ. Enriched environments, experience-dependent plasticity and disorders of the nervous system. Nat Rev Neurosci. 2006;7:697. https://doi.org/10.1038/nrn1970.

    CAS  Article  Google Scholar 

  67. 67.

    Koopmans GC, Brans M, Gomez-Pinilla F, Duis S, Gispen WH, Torres-Aleman I, et al. Circulating insulin-like growth factor I and functional recovery from spinal cord injury under enriched housing conditions. Eur J Neurosci. 2006;23:1035–46. https://doi.org/10.1111/j.1460-9568.2006.04627.x.

    Article  Google Scholar 

  68. 68.

    Cao L, Jiao X, Zuzga DS, Liu Y, Fong DM, Young D, et al. VEGF links hippocampal activity with neurogenesis, learning and memory. Nat Genet. 2004;36:827–35. https://doi.org/10.1038/ng1395.

    CAS  Article  Google Scholar 

  69. 69.

    Mohammed AH, Zhu SW, Darmopil S, Hjerling-Leffler J, Ernfors P, Winblad B. et al. Environmental enrichment and the brain. Prog Brain Research. 2002;138:109–33.

    CAS  Article  Google Scholar 

  70. 70.

    Hosseiny S, Pietri M, Petit-Paitel A, Zarif H, Heurteaux C, Chabry J, et al. Differential neuronal plasticity in mouse hippocampus associated with various periods of enriched environment during postnatal development. Brain Struct Funct. 2015;220:3435–48. https://doi.org/10.1007/s00429-014-0865-y.

    Article  Google Scholar 

  71. 71.

    Gogolla N, Galimberti I, Deguchi Y, Caroni P. Wnt signaling mediates experience-related regulation of synapse numbers and mossy fiber connectivities in the adult hippocampus. Neuron. 2009;62:510–25.

    CAS  Article  Google Scholar 

  72. 72.

    Miranda TAB, Vicente JMY, Marcon RM, Cristante AF, Morya E, do Valle AC. Time-related effects of general functional training in spinal cord-injured rats. Clinics. 2012;67:799–804.

    Article  Google Scholar 

  73. 73.

    TEPd BarrosFilho, AEIS Molina. Analysis of the sensitivity and reproducibility of the Basso, Beattie, Bresnahan (BBB) scale in wistar rats. Clinics. 2008;63:103–8.

    Article  Google Scholar 

  74. 74.

    Kuerzi J, Brown E, Shum-Siu A, Siu A, Burke D, Morehouse J, et al. Task-specificity vs. ceiling effect: step-training in shallow water after spinal cord injury. Exp Neurol. 2010;224:178–87.

    CAS  Article  Google Scholar 

  75. 75.

    Rossignol S, Frigon A. Recovery of locomotion after spinal cord injury: some facts and mechanisms. Annu Rev Neurosci. 2011;34:413–40.

    CAS  Article  Google Scholar 

  76. 76.

    McCrea DA, Rybak IA. Organization of mammalian locomotor rhythm and pattern generation. Brain Res Rev. 2008;57:134–46.

    Article  Google Scholar 

  77. 77.

    Sullivan KF, Cleveland DW. Identification of conserved isotype-defining variable region sequences for four vertebrate beta tubulin polypeptide classes. Proc Natl Acad Sci USA. 1986;83:4327–31. https://doi.org/10.1073/pnas.83.12.4327.

    CAS  Article  Google Scholar 

  78. 78.

    Tischfield MA, Baris HN, Wu C, Rudolph G, Van Maldergem L, He W, et al. Human TUBB3 mutations perturb microtubule dynamics, kinesin interactions, and axon guidance. Cell. 2010;140:74–87. https://doi.org/10.1016/j.cell.2009.12.011.

    CAS  Article  Google Scholar 

  79. 79.

    Storer PD, Houle JD. BetaII-tubulin and GAP 43 mRNA expression in chronically injured neurons of the red nucleus after a second spinal cord injury. Exp Neurol. 2003;183:537–47. https://doi.org/10.1016/s0014-4886(03)00181-x.

    CAS  Article  Google Scholar 

  80. 80.

    Joe PA, Banerjee A, Ludueña RF. The roles of cys124 and ser239 in the functional properties of human βIII tubulin. Cell Motil. 2008;65:476–86. https://doi.org/10.1002/cm.20274.

    CAS  Article  Google Scholar 

  81. 81.

    Ludueña RF. Are tubulin isotypes functionally significant. Mol Biol Cell. 1993;4:445–57.

    Article  Google Scholar 

  82. 82.

    Girgis J, Merrett D, Kirkland S, Metz G, Verge V, Fouad K. Reaching training in rats with spinal cord injury promotes plasticity and task specific recovery. Brain. 2007;130:2993–3003.

    CAS  Article  Google Scholar 

  83. 83.

    Goulart CO, Mendonça HR, Oliveira JT, Savoldi LM, Dos Santos Heringer L, Dos Santos Rodrigues A, et al. Repulsive environment attenuation during adult mouse optic nerve regeneration. Neural Plast. 2018;5851914. https://doi.org/10.1155/2018/5851914.

  84. 84.

    Sampaio-Baptista C, Vallès A, Khrapitchev AA, Akkermans G, Winkler A, Foxley S. et al. White matter structure and myelin-related gene expression alterations with experience in adult rats. Prog Neurobiol. 2020;187:101770. https://doi.org/10.1016/j.pneurobio.2020.101770.

    CAS  Article  Google Scholar 

  85. 85.

    Lin B, Xu Y, Zhang B, He Y, Yan Y, He MC. MEK inhibition reduces glial scar formation and promotes the recovery of sensorimotor function in rats following spinal cord injury. Exp Therap Med. 2014;7:66–72.

    CAS  Article  Google Scholar 

  86. 86.

    Anopas D, Junquan L, Milbreta U, Lin VPH, Chin JS, Wee SK, et al. editors. Exploring new treatment for spinalized rats by synergising robotic rehabilitation system and regenerative medicine. 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). 2018;18–21.

  87. 87.

    Wang Z, Wang Z, Lu WW, Zhen W, Yang D, Peng S. Novel biomaterial strategies for controlled growth factor delivery for biomedical applications. NPG Asia Mater. 2017;9. https://doi.org/10.1038/am.2017.171.

  88. 88.

    Zhou L, Fan L, Yi X, Zhou Z, Liu C, Fu R, et al. Soft conducting polymer hydrogels cross-linked and doped by tannic acid for spinal cord injury repair. ACS Nano. 2018;12:10957–67. https://doi.org/10.1021/acsnano.8b04609.

    CAS  Article  Google Scholar 

  89. 89.

    Mendonça MCP, Soares ES, de Jesus MB, Ceragioli HJ, Batista ÂG, Nyúl-Tóth Á, et al. PEGylation of reduced graphene oxide induces toxicity in cells of the blood–brain barrier: an in vitro and in vivo study. Mol Pharm. 2016;13:3913–24. https://doi.org/10.1021/acs.molpharmaceut.6b00696.

    CAS  Article  Google Scholar 

  90. 90.

    Yu D, Neeley WL, Pritchard CD, Slotkin JR, Woodard EJ, Langer R, et al. Blockade of peroxynitrite‐induced neural stem cell death in the acutely injured spinal cord by drug‐releasing polymer. Stem Cells. 2009;27:1212–22.

    CAS  Article  Google Scholar 

  91. 91.

    Thonhoff JR, Lou DI, Jordan PM, Zhao X, Wu P. Compatibility of human fetal neural stem cells with hydrogel biomaterials in vitro. Brain Res. 2008;1187:42–51.

    CAS  Article  Google Scholar 

  92. 92.

    Krishna V, Konakondla S, Nicholas J, Varma A, Kindy M, Wen X. Biomaterial-based interventions for neuronal regeneration and functional recovery in rodent model of spinal cord injury: a systematic review. J Spinal Cord Med. 2013;36:174–90.

    Article  Google Scholar 

  93. 93.

    Lu P, Blesch A, Tuszynski MH. Neurotrophism without neurotropism: BDNF promotes survival but not growth of lesioned corticospinal neurons. J Comp Neurol. 2001;436:456–70.

    CAS  Article  Google Scholar 

  94. 94.

    Hollis ER, Jamshidi P, Löw K, Blesch A, Tuszynski MH. Induction of corticospinal regeneration by lentiviral trkB-induced Erk activation. Proc Natl Acad Sci. 2009;106:7215–20.

    CAS  Article  Google Scholar 

  95. 95.

    Weaver LC, Verghese P, Bruce JC, Fehlings MG, Krenz NR, Marsh DR. Autonomic dysreflexia and primary afferent sprouting after clip-compression injury of the rat spinal cord. J Neurotrauma. 2001;18:1107–19. https://doi.org/10.1089/08977150152693782.

    CAS  Article  Google Scholar 

  96. 96.

    Bareyre FM, Kerschensteiner M, Raineteau O, Mettenleiter TC, Weinmann O, Schwab ME. The injured spinal cord spontaneously forms a new intraspinal circuit in adult rats. Nat Neurosci. 2004;7:269–77. https://doi.org/10.1038/nn1195.

    CAS  Article  Google Scholar 

  97. 97.

    Kakuta Y, Adachi A, Yokohama M, Horii T, Mieda T, Iizuka Y, et al. Spontaneous functional full recovery from motor and sensory deficits in adult mice after mild spinal cord injury. Heliyon. 2019;5:e01847. https://doi.org/10.1016/j.heliyon.2019.e01847.

    Article  Google Scholar 

  98. 98.

    Hilton BJ, Anenberg E, Harrison TC, Boyd JD, Murphy TH, Tetzlaff W. Re-establishment of cortical motor output maps and spontaneous functional recovery via spared dorsolaterally projecting corticospinal neurons after dorsal column spinal cord injury in adult mice. J Neurosci. 2016;36:4080–92. https://doi.org/10.1523/jneurosci.3386-15.2016.

    Article  Google Scholar 

  99. 99.

    Friedli L, Rosenzweig ES, Barraud Q, Schubert M, Dominici N, Awai L, et al. Pronounced species divergence in corticospinal tract reorganization and functional recovery after lateralized spinal cord injury favors primates. Sci Transl Med. 2015;7:302ra134. https://doi.org/10.1126/scitranslmed.aac5811.

    Article  Google Scholar 

  100. 100.

    Filli L, Schwab ME. Structural and functional reorganization of propriospinal connections promotes functional recovery after spinal cord injury. Neural Regeneration Res. 2015;10:509.

    Article  Google Scholar 

  101. 101.

    Fouad K, Pedersen V, Schwab ME, Brösamle C. Cervical sprouting of corticospinal fibers after thoracic spinal cord injury accompanies shifts in evoked motor responses. Curr Biol. 2001;11:1766–70. https://doi.org/10.1016/S0960-9822(01)00535-8.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Instituto Mexicano del Seguro Social (IMSS) [FIS/IMSS/PROTG16/1603, 2016]; Stephanie Sánchez-Torres received a scholarship from CONACyT [422267] and IMSS [029-2012]; Dr. Hermelinda Salgado-Ceballos thanks the IMSS Foundation for the grant of excellence granted.

Funding

The authors thank the technical support provided by the histotechnologist María del Carmen Baltazar Cortés.

Author information

Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Hermelinda Salgado-Ceballos.

Ethics declarations

Conflict of interest

The authors declare no competing interests, confirm that there are no known conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sánchez-Torres, S., Díaz-Ruíz, A., Ríos, C. et al. Recovery of motor function after traumatic spinal cord injury by using plasma-synthesized polypyrrole/iodine application in combination with a mixed rehabilitation scheme. J Mater Sci: Mater Med 31, 58 (2020). https://doi.org/10.1007/s10856-020-06395-5

Download citation