Enzymatically hardened calcium phosphate biocement with phytic acid addition

Abstract

Novel enzymatically hardened tetracalcium phosphate/monetite cements were prepared applying phytic acid/phytase (PHYT/F3P) mixture as hardening liquid after dissolving in acetic acid solution (CX cement). Properties of the cements were compared with classic cement hardened with 2% NaH2PO4 (C cement) and cement hardened with acetic acid solution (CAC cement) only. In the microstructure of CX cement, columnar growth of hydroxyapatite particles was found in the form of walls around hydroxyapatite agglomerates originated from tetracalcium phosphate which were mutually separated by a material depleted low density zone. Wet compressive strengths (CS) of all cements were practically identical contrary to about 30% higher dry CS’s of CX and CAC cements due to specific microstructure. It was verified noncytotoxic character of CX cement extracts and positive effect of CX cement on ALP activity and cell behavior during cultivation. The final Ca/P molar ratio and setting time of cement were effectively controlled by the amount of phytic acid and the change in PHYT/F3P mass ratio, or reaction time in hardening liquid, respectively.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Graf E, Eaton JW. Antioxidant functions of phytic acid. Free Radic Biol Med. 1990;8:61–9.

    CAS  Article  Google Scholar 

  2. 2.

    Fuster JMB, Cortes SP, Bestard JP, Freixedas F. Plant phosphates, phytate and pathological calcifications in chronic kidney disease. Nefrologia. 2017;37:20–8.

    Article  Google Scholar 

  3. 3.

    Szkudelski T. Phytic acid - its influence on organism. J Anim Feed Sci. 1997;6:427–38.

    Article  Google Scholar 

  4. 4.

    Shibutani T, Heersche JNM. Effect of medium pH on osteoclast activity and osteoclast formation in cultures of dispersed rabbit osteoclasts. J Bone Min Res. 1993;8:331–6.

    CAS  Article  Google Scholar 

  5. 5.

    Yamada S, Heymann D, Bouler JM, Daculsi G. Osteoclastic resorption of calcium phosphate ceramics with different hydroxyapatite/β-tricalcium phosphate ratios. Biomaterials. 1997;18:1037–41.

    CAS  Article  Google Scholar 

  6. 6.

    Doi Y, Iwanaga H, Shibutani T, Moriwaki Y, Iwayama Y. Osteoclastic responses to various calcium phosphates in cell cultures. J Biomed Mater Res. 1999;47:424–43.

    CAS  Article  Google Scholar 

  7. 7.

    Zaidi M, Datta HK, Moonga BS, Patchell A, MacIntyre I. Calcium-activated intracellular calcium elevation: a novel mechanism of osteoclast regulation. Biochem Biophys Res Commun. 1989;163:1461–5.

    CAS  Article  Google Scholar 

  8. 8.

    Maeno S, Niki Y, Matsumoto H, Morioka H, Yatabe T, Funayama A, Tanaka J. The effect of calcium ion concentration on osteoblast viability, proliferation and differentiation in monolayer and 3D culture. Biomaterials. 2005;26:4847–55.

    CAS  Article  Google Scholar 

  9. 9.

    Meleti Z, Shapiro IM, Adams CS. Inorganic phosphate induces apoptosis of osteoblast-like cells in culture. Bone. 2000;27:359–66.

    CAS  Article  Google Scholar 

  10. 10.

    Addison WN, McKee MD. Inositol hexakisphosphate inhibits mineralization of MC3T3-E1 osteoblast cultures. Bone. 2010;46:1100–7.

    CAS  Article  Google Scholar 

  11. 11.

    Selle PH, Ravindran V. Microbial phytase in poultry nutrition. Anim Feed Sci Technol. 2007;135:1–41.

    CAS  Article  Google Scholar 

  12. 12.

    Sandberg AS, Brune M, Carlsson NG, Hallberg L, Skoglund E, Rossander-Hulthén L. Inositol phosphates with different numbers of phosphate groups influence iron absorption in humans. Am J Clin Nutr. 1999;70:240–6.

    CAS  Article  Google Scholar 

  13. 13.

    Xu P, Price J, Wise A, Aggett PJ. Interaction of inositol phosphates with calcium, zinc and histidine. J Inorg Biochem. 1992;41:119–30.

    Article  Google Scholar 

  14. 14.

    Dersjant-Li Y, Awati A, Schulze H, Partridge G. Phytase in non-ruminant animal nutrition: a critical review on phytase activities in the gastrointestinal tract and influencing factors. J Sci Food Agric. 2015;95:878–96.

    CAS  Article  Google Scholar 

  15. 15.

    Koutsoukos PG, Amjad Z, Nancollas GH. The influence of phytate and phosphonate on the crystal growth of fluorapatite and hydroxyapatite. J Colloid Inter Sci. 1981;82:599–605.

    Article  Google Scholar 

  16. 16.

    Crea F, de Stefano C, Milea D, Sammartano S. Formation and stability of phytate complexes in solution. Coord Chem Rev. 2008;252:1108–20.

    CAS  Article  Google Scholar 

  17. 17.

    Crea P, de RobertisA, de Stefano C, Sammartano S. Speciation of phytate ion in aqueous solution. Sequestration of magnesium and calcium by phytate at different temperatures and ionic strengths, in NaCl(aq). Biophys Chem. 2006;124:18–26.

    CAS  Article  Google Scholar 

  18. 18.

    Konishi T, Mizumoto M, Honda M, Zhuang Z, Aizawa M. Fabricationn of chelate-setting cements from hydroxyapatite powders surface-modified with various sodium inositol hexaphosphate concentrations and their mechanical properties. Procedia Eng. 2012;36:137–43.

    CAS  Article  Google Scholar 

  19. 19.

    Meininger S, Blum C, Schamel M, Barralet JE, IgnatiusA, Gbureck U. Phytic acid as alternative setting retarder enhanced biological performance of dicalcium phosphate cement in vitro. Sci Rep. 2017;7:558.

    Article  CAS  Google Scholar 

  20. 20.

    Hurle K, Weichhold J, Brueckner M, Gbureck U, Brueckner T, Goetz-Neunhoeffer F. Hydration mechanism of a calcium phosphate cement modified with phytic acid. Acta Biomater. 2018;80:378–89.

    CAS  Article  Google Scholar 

  21. 21.

    Christel T, Christ S, Barralet JE, Groll J, Gbureck U. Chelate bonding mechanism in a novel magnesium phosphate bone cement. J Am Ceram Soc. 2015;98:694–97.

    CAS  Article  Google Scholar 

  22. 22.

    Horiguchi Y, Yoshikawa, Oribe, Aizawa M. Fabrication of chelate-setting hydroxyapatite cements from four kinds of commercially-available powder with various shape and crystallinity and their mechanical property. J Ceram Soc Jpn. 2008;116:50–5.

    CAS  Article  Google Scholar 

  23. 23.

    Sheikh Z, Geffers M, Christel T, Barralet JE, Gbureck U. Chelate setting of alkali ion substituted calcium phosphates. Ceram Int. 2015;41:10010–17.

    CAS  Article  Google Scholar 

  24. 24.

    Wyss M, Pasamontes L, Friedlein A, Remy R, Tessier M, Kronenberger A, Middendorf A, Lehmann M, Schnoebelen L, Rothlisberger U, Kusznir E, Wahl G, Muller F, Lahm HW, Vogel K, van Loon A. Biophysical characterization of fungal phytases (myo-inositol hexakisphosphate phosphohydrolases): molecular size, glycosylation pattern, and engineering of proteolytic resistance. Appl Environ Microbiol. 1999;65:359–66.

    CAS  Article  Google Scholar 

  25. 25.

    March JG, Grases F, Salvador A. Hydrolysis of phytic acid by microwave treatment: application to phytic acid analysis in pharmaceutical preparations. Microchem J. 1998;59:413–16.

    CAS  Article  Google Scholar 

  26. 26.

    Zor T, Selinger Z. Linearization of the bradford protein assay increases its sensitivity: theoretical and experimental studies. Anal Biochem. 1996;236:302–8.

    CAS  Article  Google Scholar 

  27. 27.

    Bohner M. Calcium orthophosphates in medicine: from ceramics to calcium phosphate cements. Injury. 2000;31:37–47.

    Article  Google Scholar 

  28. 28.

    Krajewski A, Mazzocchi M, Buldini PL, Ravaglioli A, Tinti A, Taddei P, Fagnano C. Synthesis of carbonated hydroxyapatites: efficiency of the substitution and critical evaluation of analytical methods. J Mol Struct. 2005;744–747:221–8.

    Article  CAS  Google Scholar 

  29. 29.

    Apfelbaum F, Diab H, Mayer I, Featherstone JDB. An FTIR study of carbonate in synthetic apatites. J Inorg Biochem. 1992;45:277–82.

    CAS  Article  Google Scholar 

  30. 30.

    Wilson RM, Elliott JC, Dowker SEP, Rodriguez-Lorenzo LM. Rietveld refinements and spectroscopic studies of the structure of Ca-deficient apatite. Biomaterials. 2005;26:1317–27.

    CAS  Article  Google Scholar 

  31. 31.

    Ou-Yang H, Paschalis EP, Boskey AL, Mendelsohn R. Two-dimensional vibrational correlation spectroscopy of in vitro hydroxyapatite maturation. Biopolym (Biospectroscopy). 2000;57:129–39.

    CAS  Article  Google Scholar 

  32. 32.

    Gadaleta SJ, Paschalis EP, Betts F, Mendelsohn R, Boskey AL. Fourier transform infrared spectroscopy of the solution-mediated conversion of amorphous calcium phosphate to hydroxyapatite: new correlations between X-ray diffraction and infrared data. Calcif Tissue Int. 1996;58:9–16.

    CAS  Article  Google Scholar 

  33. 33.

    Simpson CJ, Wise A. Binding of zinc and calcium to inositol phosphates (phytate) in vitro. Brit J Nut. 1990;64:225–32.

    CAS  Article  Google Scholar 

  34. 34.

    Xu P, Price J, Wise A, Aggett PJ. Interaction of inositol phosphates with calcium, zinc and histidine. J Inorg Biochem. 1992;41:119–30.

    Article  Google Scholar 

  35. 35.

    He Z, Honeycutt CW, Zhang T, Bertsch PM. Preparation and FT–IR characterization of metal phytate compounds. J Environ Qual. 2006;35:1319–28.

    CAS  Article  Google Scholar 

  36. 36.

    Guan XH, Shang Ch, Zhu J, Chen GH. ATR-FTIR investigation on the complexation of myo-inositol hexaphosphate with aluminum hydroxide. J Coll Inter Sci. 2006;293:296–302.

  37. 37.

    McKie VA, McCleary BV. A novel and rapid colorimetric method for measuring total phosphorus and phytic acid in foods and animal feeds. J AOAC Int. 2016;99:738–43.

    CAS  Article  Google Scholar 

  38. 38.

    Tenhuisen KS, Brown PW. The effects of citric and acetic acids on the formation of calcium-deficient hydroxyapatite at 38 °C. J Mat Sci Mater Med. 1994;5:291–8.

    CAS  Article  Google Scholar 

  39. 39.

    Koutsoukos PG, Amjad Z, Nancollas GH. The influence of phytate and phosphonate on the crystal growth of fiuorapatite and hydroxyapatite. J Coll Inter Sci. 1981;83:599–60.

    CAS  Article  Google Scholar 

  40. 40.

    Fernandez D, Ortega-Castro J, Frau J. Theoretical study of the HAP crystal growth inhibition potency of pyrophosphate, etidronate, citrate and phytate. Deciphered theadsorbed conformation of phytate on the HAP (001) surface. Appl Surf Sci. 2017;408:110–11.

    CAS  Article  Google Scholar 

  41. 41.

    Ganesan K, Epple M. Calcium phosphate nanoparticles as nuclei for the preparation of colloidal calcium phytate. N J Chem. 2008;32:1326–30.

    CAS  Article  Google Scholar 

  42. 42.

    Chauhan S, Hofmann MP, Shelton RM. Effect of protein addition on the setting behaviour of a calcium phosphate cement. Key Eng Mater. 2006;309–311:841–44.

    Article  Google Scholar 

  43. 43.

    Gilman H, Hukins DWL. Seeded growth of hydroxyapatite in the presence of dissolved albumin. J Inorg Biochem. 1994;55:21–30.

    CAS  Article  Google Scholar 

  44. 44.

    Garnett J, Dieppe P. The effects of serum and human albumin on calcium hydroxyapatite crystal growth. Biochem J. 1990;266:863–68.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Slovak Research and Development Agency under the contract No. APVV-17-0110.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lubomir Medvecky.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Medvecky, L., Stulajterova, R., Giretova, M. et al. Enzymatically hardened calcium phosphate biocement with phytic acid addition. J Mater Sci: Mater Med 31, 54 (2020). https://doi.org/10.1007/s10856-020-06387-5

Download citation