Novel chitosan derivative based composite scaffolds with enhanced angiogenesis; potential candidates for healing chronic non-healing wounds

Abstract

The success of wound healing depends upon the proper growth of vascular system in time in the damaged tissues. Poor blood supply to wounded tissues or tissue engineered grafts leads to the failure of wound healing or rejection of grafts. In present paper, we report the synthesis of novel organosoluble and pro-angiogenic chitosan derivative (CSD) by the reaction of chitosan with 1,3-dimethylbarbituric acid and triethylorthoformate (TEOF). The synthesized material was characterized by FTIR and 13C-NMR to confirm the incorporated functional groups and new covalent connectivities. Biodegradability of the synthesized chitosan derivative was tested in the presence of lysozyme and was found to be comparable with CS. The cytotoxicity and apoptosis effect of new derivative was determined against gastric adenocarcinoma (AGS) cells and was found to be non-toxic. The CSD was found to be soluble in majority of organic solvents. It was blended with polycaprolactone (PCL) to form composite scaffolds. From an ex ovo CAM assay, it was noted that CSD stimulated the angiogenesis.

This is a preview of subscription content, log in to check access.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Adair TH, Montani J-P, Angiogenesis, colloquium series on integrated systems physiology: from molecule to function. Morgan & Claypool Life Sciences; London, United Kindom, 2010.

  2. 2.

    Yar M, Gigliobianco G, Shahzadi L, Dew L, Siddiqi SA, Khan AF et al. Production of chitosan PVA PCL hydrogels to bind heparin and induce angiogenesis. Int J Polym Mater Polym Biomat. 2016;65:466–76.

    CAS  Article  Google Scholar 

  3. 3.

    Augustine R, Dominic EA, Reju I, Kaimal B, Kalarikkal N, Thomas S. Investigation of angiogenesis and its mechanism using zinc oxide nanoparticle-loaded electrospun tissue engineering scaffolds. RSC Adv. 2014;4:51528–36.

    CAS  Article  Google Scholar 

  4. 4.

    Augustine R, Nethi SK, Kalarikkal N, Thomas S, Patra CR. Electrospun polycaprolactone (PCL) scaffolds embedded with europium hydroxide nanorods (EHNs) with enhanced vascularization and cell proliferation for tissue engineering applications. J Mater Chem B. 2017;5:4660–72.

    CAS  Article  Google Scholar 

  5. 5.

    Rizwan M, Yahya R, Hassan A, Yar M, Azzahari A, Selvanathan V et al. pH sensitive hydrogels in drug delivery: brief history, properties, swelling, and release mechanism, material selection and applications. Polymers. 2017;9:137.

    Article  Google Scholar 

  6. 6.

    Zhao-Sheng C, Yue-Ming S, Chun-Sheng Y, Xue-Mei Z. Preparation, characterization, and antibacterial activities of para-biguanidinyl benzoyl chitosan hydrochloride. J Appl Polym Sci. 2012;125:1146–51.

    Article  Google Scholar 

  7. 7.

    Bashir S, Teo YY, Ramesh S, Ramesh K, Khan AA. N-succinyl chitosan preparation, characterization, properties and biomedical applications: a state of the art review. Rev Chem Eng. 2015;31:563–97.

    CAS  Article  Google Scholar 

  8. 8.

    Nishimura S, Kohgo O, Kurita K, Kuzuhara H. Chemospecific manipulations of a rigid polysaccharide: syntheses of novel chitosan derivatives with excellent solubility in common organic solvents by regioselective chemical modifications. Macromolecules. 1991;24:4745–8.

    CAS  Article  Google Scholar 

  9. 9.

    Bertoni F, Barbani N, Giusti P, Ciardelli G. Transglutaminase reactivity with gelatine: perspective applications in tissue engineering. Biotechnol Lett. 2006;28:697–702.

    CAS  Article  Google Scholar 

  10. 10.

    Bidgoli H, Zamani A, Taherzadeh MJ. Effect of carboxymethylation conditions on the water-binding capacity of chitosan-based superabsorbents. Carbohydr Res. 2010;345:2683–9.

    CAS  Article  Google Scholar 

  11. 11.

    Bashir S, Teo YY, Ramesh S, Ramesh K. Physico-chemical characterization of pH-sensitive N-Succinyl chitosan-g-poly (acrylamide-co-acrylic acid) hydrogels and in vitro drug release studies. Polym Degrad Stab. 2017;139:38–54.

    CAS  Article  Google Scholar 

  12. 12.

    Huacai G, Wan P, Dengke L. Graft copolymerization of chitosan with acrylic acid under microwave irradiation and its water absorbency. Carbohydrate Polym. 2006;66:372–8.

    Article  Google Scholar 

  13. 13.

    Lee D, Quan ZS, Lu C, Jeong JA, Song C, Song M-S et al. Preparation and physical properties of chitosan benzoic acid derivatives using a phosphoryl mixed anhydride system. Molecules. 2012;17:2231.

    CAS  Article  Google Scholar 

  14. 14.

    Jayakumar R, Nwe N, Tokura S, Tamura H. Sulfated chitin and chitosan as novel biomaterials. Int J Biol Macromol. 2007;40:175–81.

    CAS  Article  Google Scholar 

  15. 15.

    Kahya N. Water soluble chitosan derivatives and their biological activities: a review, Polym Sci. https://doi.org/10.4172/2471-9935.100043.

  16. 16.

    Rasheed T, Bilal M, Abu-Thabit NY, Iqbal HMN. 3 - The smart chemistry of stimuli-responsive polymeric carriers for target drug delivery applications. In: Makhlouf ASH, Abu-Thabit NY, (eds). Stimuli responsive polymeric nanocarriers for drug delivery applications, Vol 1. Woodhead Publishing; Cambridge, United Kindom, 2018, p. 61–99.

    Google Scholar 

  17. 17.

    Iqbal HMN, Keshavarz T. 14 - Bioinspired polymeric carriers for drug delivery applications. In: Makhlouf ASH, Abu-Thabit NY, (eds). Stimuli responsive polymeric nanocarriers for drug delivery applications, Vol 1. Woodhead Publishing; Cambridge, United Kindom, 2018, p. 377–404.

    Google Scholar 

  18. 18.

    Raza A, Hayat U, Rasheed T, Bilal M, Iqbal HMN. Redox-responsive nano-carriers as tumor-targeted drug delivery systems. Eur J Med Chem. 2018;157:705–15.

    CAS  Article  Google Scholar 

  19. 19.

    Ma G, Yang D, Kennedy JF, Nie J. Synthesize and characterization of organic-soluble acylated chitosan. Carbohydrate Polym. 2009;75:390–4.

    CAS  Article  Google Scholar 

  20. 20.

    Zhang P, Cao M. Preparation of a novel organo-soluble chitosan grafted polycaprolactone copolymer for drug delivery. Int J Biol Macromol. 2014;65:21–7.

    CAS  Article  Google Scholar 

  21. 21.

    Renbutsu E, Hirose M, Omura Y, Nakatsubo F, Okamura Y, Okamoto Y et al. Preparation and biocompatibility of novel UV-curable chitosan derivatives. Biomacromolecules. 2005;6:2385–8.

    CAS  Article  Google Scholar 

  22. 22.

    Ulery BD, Nair LS, Laurencin CT. Biomedical applications of biodegradable polymers. J Polym Sci, Part B: Polym Phys. 2011;49:832–64.

    CAS  Article  Google Scholar 

  23. 23.

    Woodruff MA, Hutmacher DW. The return of a forgotten polymer—polycaprolactone in the 21st century. Prog Polym Sci. 2010;35:1217–56.

    CAS  Article  Google Scholar 

  24. 24.

    Aiba S-i. Studies on chitosan: 4. Lysozymic hydrolysis of partially N-acetylated chitosans. Int J Biol Macromol. 1992;14:225–8.

    CAS  Article  Google Scholar 

  25. 25.

    Nordtveit RJ, Vårum KM, Smidsrød O. Degradation of fully water-soluble, partially N-acetylated chitosans with lysozyme. Carbohydrate Polym. 1994;23:253–60.

    CAS  Article  Google Scholar 

  26. 26.

    Nordtveit RJ, Vårum KM, Smidsrød O. Degradation of partially N-acetylated chitosans with hen egg white and human lysozyme. Carbohydrate Polym. 1996;29:163–7.

    CAS  Article  Google Scholar 

  27. 27.

    Han T, Nwe N, Furuike T, Tokura S, Tamura H. Methods of N-acetylated chitosan scaffolds and its in-vitro biodegradation by lysozyme. J Biomed Sci Eng. 2012;5:15.

    CAS  Article  Google Scholar 

  28. 28.

    Zimoch-Korzycka A, Kulig D, Jarmoluk A, Marycz K, Matuszczak W. Study of Enzymatically treated alginate/chitosan hydrosols in sponges formation process. Polymers. 2016;8:8.

    Article  Google Scholar 

  29. 29.

    Cohen JS. Proton magnetic resonance studies of human lysozyme. Nature. 1969;223:43–6.

    CAS  Article  Google Scholar 

  30. 30.

    Banjard S, Blake C, Swan I. Lsozyme. In: Osserman EF, Canfield RE, Beychok S, editors. New York; Academic Press Inc. 1974. p. 71–9.

  31. 31.

    Vårum KM, Kristiansen Holme H, Izume M, Torger Stokke B, Smidsrød O. Determination of enzymatic hydrolysis specificity of partially N-acetylated chitosans. Biochim Biophys Acta (BBA) - Gen Subj. 1996;1291:5–15.

    Article  Google Scholar 

  32. 32.

    Huopalahti R, Anton M, López-Fandiño R, Schade R, Bioactive egg compounds. Springer; 2007. p. 33–42.

  33. 33.

    Rizwan M, Yahya R, Hassan A, Yar M, Anita Omar R, Azari P et al. Synthesis of a novel organosoluble, biocompatible, and antibacterial chitosan derivative for biomedical applications. J Appl Polym Sci. 2018;135:45905–n/a.

    Article  Google Scholar 

  34. 34.

    Bernfeld P. Enzymes of starch degradation and synthesis. In: Nord F. F (ed) Advances in enzymology and related areas of molecular biology. United States: John Wiley & Sons; 1951.

  35. 35.

    Halim AAA, Feroz SR, Tayyab S. Does recovery in the spectral characteristics of GdnHCl-denatured bacillus licheniformis α-amylase due to added calcium point towards protein stabilization? Biosci Biotechnol Biochem. 2013;77:87–96.

    Article  Google Scholar 

  36. 36.

    Ahtzaz S, Nasir M, Shahzadi L, Amir W, Anjum A, Arshad R et al. A study on the effect of zinc oxide and zinc peroxide nanoparticles to enhance angiogenesis-pro-angiogenic grafts for tissue regeneration applications. Mater Des. 2017;132:409–18.

    CAS  Article  Google Scholar 

  37. 37.

    Khan AS, Hussain AN, Sidra L, Sarfraz Z, Khalid H, Khan M et al. Fabrication and in vivo evaluation of hydroxyapatite/carbon nanotube electrospun fibers for biomedical/dental application. Mater Sci Eng: C. 2017;80:387–96.

    CAS  Article  Google Scholar 

  38. 38.

    Costa-Júnior ES, Barbosa-Stancioli EF, Mansur AAP, Vasconcelos WL, Mansur HS. Preparation and characterization of chitosan/poly(vinyl alcohol) chemically crosslinked blends for biomedical applications. Carbohydr Polym. 2009;76:472–81.

    Article  Google Scholar 

  39. 39.

    Heux L, Brugnerotto J, Desbrières J, Versali MF, Rinaudo M. Solid state NMR for determination of degree of acetylation of chitin and chitosan. Biomacromolecules. 2000;1:746–51.

    CAS  Article  Google Scholar 

  40. 40.

    Xu R, Aotegen B, Zhong Z Synthesis, characterization and biological activity of C6-Schiff bases derivatives of chitosan. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2017.06.119.

    CAS  Article  Google Scholar 

  41. 41.

    Ma G, Qian B, Yang J, Hu C, Nie J. Synthesis and properties of photosensitive chitosan derivatives(1). Int J Biol Macromol. 2010;46:558–61.

    CAS  Article  Google Scholar 

  42. 42.

    Bae IH, Jang WG, Lim HP, Park SW, Lee KM, Park YJ et al. Morphological property and in vitro enzymatic degradation of modified chitosan as a scaffold. Macromol Res. 2011;19:1250–6.

    CAS  Article  Google Scholar 

  43. 43.

    Aleem AR, Shahzadi L, Alvi F, Khan AF, Chaudhry AA, ur Rehman I et al. Thyroxin releasing chitosan/collagen based smart hydrogels to stimulate neovascularization. Mater Des. 2017;133:416–25.

    CAS  Article  Google Scholar 

  44. 44.

    Yar M, Farooq A, Shahzadi L, Khan AS, Mahmood N, Rauf A et al. Novel meloxicam releasing electrospun polymer/ceramic reinforced biodegradable membranes for periodontal regeneration applications. Mater Sci Eng: C. 2016;64:148–56.

    CAS  Article  Google Scholar 

  45. 45.

    Jamal A, Shahzadi L, Ahtzaz S, Zahid S, Chaudhry AA, ur Rehman I et al. Identification of anti-cancer potential of doxazocin: loading into chitosan based biodegradable hydrogels for on-site delivery to treat cervical cancer. Mater Sci Eng: C. 2018;82:102–9.

    CAS  Article  Google Scholar 

  46. 46.

    Shahzadi L, Yar M, Jamal A, Siddiqi SA, Chaudhry AA, Zahid S et al. Triethyl orthoformate covalently cross-linked chitosan-(poly vinyl) alcohol based biodegradable scaffolds with heparin-binding ability for promoting neovascularisation. J Biomater Appl. 2016;31:582–93.

    CAS  Article  Google Scholar 

  47. 47.

    Yar M, Shahzad S, Siddiqi SA, Mahmood N, Rauf A, Anwar MS et al. Triethyl orthoformate mediated a novel crosslinking method for the preparation of hydrogels for tissue engineering applications: characterization and in vitro cytocompatibility analysis. Mater Sci Eng: C. 2015;56:154–64.

    CAS  Article  Google Scholar 

  48. 48.

    Rizwan M, Yahya R, Hassan A, Yar M, Anita Omar R, Azari P et al. Synthesis of a novel organosoluble, biocompatible, and antibacterial chitosan derivative for biomedical applications. J Appl Polym Sci. 2018;135:45905.

    Article  Google Scholar 

  49. 49.

    Bae I-H, Jang WG, Lim H-P, Park S-W, Lee K-M, Park Y-J et al. Morphological property and in vitro enzymatic degradation of modified chitosan as a scaffold. Macromol Res. 2011;19:1250–6.

    CAS  Article  Google Scholar 

  50. 50.

    Kim J-A, Ahn B-N, Kong C-S, Kim S-K. Chitooligomers inhibit UV-A-induced photoaging of skin by regulating TGF-β/Smad signaling cascade. Carbohydr Polym. 2012;88:490–5.

    CAS  Article  Google Scholar 

  51. 51.

    Zhang H, Jia X, Han F, Zhao J, Zhao Y, Fan Y et al. Dual-delivery of VEGF and PDGF by double-layered electrospun membranes for blood vessel regeneration. Biomaterials. 2013;34:2202–12.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors are indebted to the financial grants from Universiti Malaya (PG335-2016A) and Ministry of Higher Education, Malaysia (FP052-2016).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rosiyah Yahya.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rizwan, M., Yahya, R., Hassan, A. et al. Novel chitosan derivative based composite scaffolds with enhanced angiogenesis; potential candidates for healing chronic non-healing wounds. J Mater Sci: Mater Med 30, 72 (2019). https://doi.org/10.1007/s10856-019-6273-3

Download citation