Skip to main content

Advertisement

Log in

A high current anodization to fabricate a nano-porous structure on the surface of Ti-based implants

  • Engineering and Nano-engineering Approaches for Medical Devices
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

In this study, an oxide layer on Ti-based implants is fabricated by using a high current anodization (HCA) technique in the nitrate electrolyte. This layer is composed of micro-pits and nano-porous arrays in the honeycomb structure. The results show that both the roughness and the layer thickness are related to the reaction time, whereas the size of nano-pores has little to do with the anodization duration. Compared to the nano-tubular arrays constructed by the conventional anodization, this nano-porous layer shows significantly improved mechanical stability. Furthermore, the in vitro assay of osteoblasts shows that cells behaviors on this surface can be modulated by the topology of this special layer. A suitable hierarchical structure composed of micro-pits and nano-porous structure can significantly stimulate osteoblasts attachment, activity, spreading and ALP function. Therefore, this hierarchical surface layer may provide a promising approach, which endows the Ti-based implants with better stability and osseointegration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Long M, Rack HJ. Titanium alloys in total joint replacement—a materials science perspective. Biomaterials. 1998;19:1621–39.

    Article  CAS  Google Scholar 

  2. Gepreel MAH, Niinomi M. Biocompatibility of Ti-alloys for long-term implantation. J Mech Behav Biomed Mater. 2013;20:407–15.

    Article  Google Scholar 

  3. Geetha M, Singh AK, Asokamani R, Gogia AK. Ti based biomaterials, the ultimate choice for orthopaedic implants–a review. Prog Mater Sci. 2009;54:397–425.

    Article  CAS  Google Scholar 

  4. Gu´ehennec LL, Soueidan A, Layrolle P, Amouriq Y. Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater. 2007;23:844–54.

    Article  Google Scholar 

  5. Jonge LT, Leeuwenburgh SCG, Wolke JGC, Jansen JA. Organic–inorganic surface modifications for titanium implant surfaces. Pharm Res. 2008;25:2357–69.

    Article  CAS  Google Scholar 

  6. Sula YT, Johansson C, Byon E, Albrektssona T. The bone response of oxidized bioactive and non-bioactive titanium implants. Biomaterials. 2005;26:6720–30.

    Article  Google Scholar 

  7. Bose S, Robertson SF, Bandyopadhyay A. Surface modification of biomaterials and biomedical devices using additive manufacturing. Acta Biomater. 2017;66:6–22.

    Article  Google Scholar 

  8. Burg KJL, Porter S, Kellam JF. Biomaterial developments for bone tissue engineering. Biomaterials. 2000;21:2347–59.

    Article  CAS  Google Scholar 

  9. Puleo DA, Nanci A. Understanding and controlling the bone–implant interface. Biomaterials. 1999;20:2311–21.

    Article  CAS  Google Scholar 

  10. Karazisis D, Petronis S, Agheli H, Emanuelsson L, Norlindh B, Johansson A, Rasmusson L, Thomsen P, Omar O. The influence of controlled surface nanotopography on the early biological events of osseointegration. Acta Biomater. 2017;53:559–71.

    Article  CAS  Google Scholar 

  11. Camargo WA, Takemoto S, Hoekstra JW, Leeuwenburgh SCG, Jansen JA, Beucken JJJP, Alghamdi HS. Effect of surface alkali-based treatment of titanium implants on ability to promote in vitro mineralization and in vivo bone formation. Acta Biomater. 2017;57:511–23.

    Article  CAS  Google Scholar 

  12. Wang X, Xu S, Zhou S, Xu W, Leary M, Choong P, Qian M, Brandt M, Xie YM. Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review. Biomaterials. 2016;83:127–41.

    Article  CAS  Google Scholar 

  13. Medvedev AE, Ng HP, Lapovok R, Estrin Y, Lowe TC, Anumalasetty VN. Effect of bulk microstructure of commercially pure titanium on surface characteristics and fatigue properties after surface modification by sand blasting and acid-etching. J Mech Behav Biomed Mater. 2016;57:55–68.

    Article  CAS  Google Scholar 

  14. Jayaraman M, Meyer U, Buhner M, Joos U, Wiesmann HP. Influence of titanium surfaces on attachment of osteoblast-like cells in vitro. Biomaterials. 2004;25:625–31.

    Article  CAS  Google Scholar 

  15. Zhou R, Wei D, Cheng S, Feng W, Du Q, Yang H, Li B, Wang Y, Jia D, Zhou Y. Structure, MC3T3-E1 cell response, and osseointegration of macroporous titanium implants covered by a bioactive microarc oxidation coating with microporous structure. ACS Appl Mater Interfaces. 2014;6:4797–811.

    Article  CAS  Google Scholar 

  16. Papalexiou V, Novaes AB, Grisiet MFM, Souza SSLS, Taba M, Kajiwara JK. Influence of implant microstructure on the dynamics of bone healing around immediate implants placed into periodontally infected sites. Clin Oral Impl Res. 2004;15:44–53.

    Article  Google Scholar 

  17. Kwok CT, Wong PK, Cheng FT, Man HC. Characterization and corrosion behavior of hydroxyapatite coatings on Ti6Al4V fabricated by electrophoretic deposition. Appl Surf Sci. 2009;255:6736–44.

    Article  CAS  Google Scholar 

  18. Assefpour-Dezfuly M, Vlachos C, Andrews EH. Oxide morphology and adhesive bonding on titanium surfaces. J Mater Sci. 1984;19:3626–39.

    Article  CAS  Google Scholar 

  19. Zwilling V, Darque‐Ceretti E, Boutry‐Forveille A, David D, Perrin MY, Aucouturier M. Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy. Surf Interface Anal. 1999;27:629–37.

    Article  CAS  Google Scholar 

  20. Gong DW, Grimes CA, Varghese OK, Hu WC, Singh RS, Chen Z, Dickey EC. Titanium oxide nanotube arrays prepared by anodic oxidation. J Mater Res. 2001;16:3331–4.

    Article  CAS  Google Scholar 

  21. Lee K, Mazare A, Schmuki P. One-dimensional titanium dioxide nanomaterials: nanotubes. Chem Rev. 2014;114:9385–454.

    Article  CAS  Google Scholar 

  22. Fratzl P, Gupta HS, Paschalis EP, Roschger P. Structure and mechanical quality of the collagen–mineral nano-composite in bone. J Mater Chem. 2004;14:2115–23.

    Article  CAS  Google Scholar 

  23. Olszta MJ, Cheng X, Jee SS, Kumar R, Kim YY, Kaufman MJ, Douglas EP, Gower LB. Bone structure and formation: a new perspective. Mat Sci Eng R. 2007;58:77–116.

    Article  Google Scholar 

  24. Mehta M, Schmidt-Bleek K, Duda GN, Mooney DJ. Biomaterial delivery of morphogens to mimic the natural healing cascade in bone. Adv Drug Deliv Rev. 2012;64:1257–76.

    Article  CAS  Google Scholar 

  25. Holzwarth JM, Ma PX. Biomimetic nanofibrous scaffolds for bone tissue engineering. Biomaterials. 2011;32:9622–9.

    Article  CAS  Google Scholar 

  26. Zhang C, Mcadams DA, Grunlan JC. Nano/Micro‐Manufacturing of Bioinspired Materials: a Review of Methods to Mimic Natural Structures. Adv Mater. 2016;28:6292–321.

    Article  CAS  Google Scholar 

  27. Roy P, Berger S, Schmuki P. TiO2 nanotubes: synthesis and applications. Angew Chem Int Ed. 2011;0:2904–39.

    Article  CAS  Google Scholar 

  28. Zhou X, Nguyena NT, Özkan S, Schmuki P. Anodic TiO2 nanotube layers: why does self-organized growth occur—a mini review. Electrochem Commun. 2014;46:157–62.

    Article  CAS  Google Scholar 

  29. Yu D, Zhu X, Xu Z, Zhong X, Gui Q, Song Y, Zhang S, Chen X, Li D. Facile method to enhance the adhesion of TiO2 nanotube arrays to Ti substrate. ACS Appl Mater Interfaces. 2014;6:8001–5.

    Article  CAS  Google Scholar 

  30. Chang C, Huang X, Liu Y, Bai L, Yang X, Hang R, Tang B, Chu PK. High-current anodization: a novel strategy to functionalize titanium-based biomaterials. Electrochim Acta. 2015;173:345–53.

    Article  CAS  Google Scholar 

  31. Arifin A, Sulong AB, Muhamad N, Syarif J, Ramli MI. Material processing of hydroxyapatite and titanium alloy (HA/Ti) composite as implant materials using powder metallurgy: a review. Mater Des. 2014;55:165–75.

    Article  CAS  Google Scholar 

  32. Liu X, Chu PK, Ding C. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mat Sci Eng R. 2004;47:49–121.

    Article  Google Scholar 

  33. Zhao L, Mei S, Chu PK, Zhang Y, Wu Z. The influence of hierarchical hybrid micro/nano-textured titanium surface with titania nanotubes on osteoblast functions. Biomaterials. 2010;31:5072–82.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Chinese Government Scholarship (No.201508140048), National Natural Science Foundation of China (31400815, 31300808), Beijing Natural Science Foundation (Nr.7152067) and Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (201417 and 201626).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaobo Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Wang, X., Huang, X. et al. A high current anodization to fabricate a nano-porous structure on the surface of Ti-based implants. J Mater Sci: Mater Med 30, 2 (2019). https://doi.org/10.1007/s10856-018-6206-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-018-6206-6

Navigation