Skip to main content
Log in

Synthesis and evaluation of topical hydrogel membranes; a novel approach to treat skin disorders

  • Biomaterials Synthesis and Characterization
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The aim of the study was to synthesize and evaluate chitosan-based topical cross-linked hydrogel membranes of mupirocin for new pharmaceutical controlled release application. These cross-linked structured membranes were synthesized by modification of free radical polymerization. Low molecular weight (LMW) chitosan is cross-linked with 2-acrylamido-2-methylpropane sulfonic acid (AMPS) with a crosslinker N,N-methylenebisacrylamide (MBA). Hydrogel membranes were characterized by FTIR, DSC, TGA, SEM, Swelling behavior, sol–gel analysis, in vitro percent drug release at different pH, permeation across skin, ex vivo drug deposition study, irritation study and in vivo antibacterial activity of mupirocin loaded hydrogels. Developed membranes were spherical, adhesive and have good elastic strength. FTIR confirmed the cross-linking and formation of new structure having appropriate characteristics needed for controlled release delivery system. Drug release through rabbit’s skin was evaluated by Franz diffusion cell and up to 6329.61 µg/1.5 cm2 was permeated and drug deposition in skin revealed significant retention up to 1224 µg/1.5 cm2. Formulated membranes were nonirritant to the skin as validated by Draize patch test. In surgical wound model, LMW chitosan-based hydrogel membranes showed prolong efficacy against bacterial infection caused by S. aureus. Enhanced retention of drug in skin demonstrated the good potential of topical delivery for skin bacterial infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Wysocki AB. Evaluating and managing open skin wounds: colonization versus infection, AACN Advanced. Crit Care. 2002;13:382–97.

    Google Scholar 

  2. Calum H, Moser C, Jensen P, Christophersen L, Maling D, Van Gennip M, Jacobsen GK. et al. Thermal injury induces impaired function in polymorphonuclear neutrophil granulocytes and reduced control of burn wound infection. Clin Exp Immunol. 2009;156:102–10.

    Article  CAS  Google Scholar 

  3. Bhat S, Milner S. Antimicrobial peptides in burns and wounds. Curr Protein Pept Sci. 2007;8:506–20.

    Article  CAS  Google Scholar 

  4. Erol S, Altoparlak U, Akcay MN, Celebi F, Parlak M. Changes of microbial flora and wound colonization in burned patients. Burns. 2004;30:357–61.

    Article  Google Scholar 

  5. Carafa M, Santucci E, Lucania G. Lidocaine-loaded non-ionic surfactant vesicles: characterization and in vitro permeation studies. Int J Pharm. 2002;231:21–32.

    Article  CAS  Google Scholar 

  6. Tan HS, Pfister WR. Pressure-sensitive adhesives for transdermal drug delivery systems. Pharm Sci Technol Today. 1999;2:60–69.

    Article  CAS  Google Scholar 

  7. Peppas N, Bures P, Leobandung W, Ichikawa H. Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm. 2000;50:27–46.

    Article  CAS  Google Scholar 

  8. J Rosiak, I Janik, S Kadlubowski, M Kozicki, P Kujawa, P Stasica, et al. Radiation formation of hydrogels for biomedical application, radiation synthesis and modification of polymers for biomedical applications. 2002;5–47.

  9. Dong Y, Qiu W, Ruan Y, Wang M, Xu C, Wu Y. et al. Influence of molecular weight on critical concentration of chitosan/formic acid liquid crystalline solution. Polymer J. 2001;33:387–9.

    Article  CAS  Google Scholar 

  10. Deng C-M, He L-Z, Zhao M, Yang D, Liu Y. Biological properties of the chitosan-gelatin sponge wound dressing. Carbohydr Polym. 2007;69:583–9.

    Article  CAS  Google Scholar 

  11. Alsarra IA. Chitosan topical gel formulation in the management of burn wounds. Int J Biol Macromol. 2009;45:16–21.

    Article  CAS  Google Scholar 

  12. Muzzarelli R, Baldassarre V, Conti F, Ferrara P, Biagini G, Gazzanelli G. et al. Biological activity of chitosan: ultrastructural study. Biomaterials. 1988;9:247–52.

    Article  CAS  Google Scholar 

  13. Alsbjörn B. In search of an ideal skin substitute. Scand J Plast Reconstr Surg. 1984;18:127–33.

    Article  Google Scholar 

  14. Sorlier P, Viton C, Domard A. Relation between solution properties and degree of acetylation of chitosan: role of aging. Biomacromolecules. 2002;3:1336–42.

    Article  CAS  Google Scholar 

  15. Pappa KA. The clinical development of mupirocin. J Am Acad Dermatol. 1990;22:873–9.

    Article  CAS  Google Scholar 

  16. Ward A, Campoli-Richards DM. Mupirocin. Drugs. 1986;32:425–44.

    Article  CAS  Google Scholar 

  17. Conly JM, Johnston BL. Mupirocin—are we in danger of losing it?. Can J Infect Dis. 2002;13:157.

    Article  Google Scholar 

  18. Parenti M, Hatfield S, Leyden J. Mupirocin: a topical antibiotic with a unique structure and mechanism of action. Clin Pharm. 1987;6:761–70.

    CAS  Google Scholar 

  19. Gisby J, Bryant J. Efficacy of a new cream formulation of mupirocin: comparison with oral and topical agents in experimental skin infections. Antimicrob Agents Chemother. 2000;44:255–60.

    Article  CAS  Google Scholar 

  20. Draize JH, Woodard G, Calvery HO. Methods for the study of irritation and toxicity of substances applied topically to the skin and mucous membranes. J Pharmacol Exp Ther. 1944;82:377–90.

    CAS  Google Scholar 

  21. Vermeer B. Skin irritation and sensitization. J Control Release. 1991;15:261–5.

    Article  CAS  Google Scholar 

  22. Joshi M, Patravale V. Formulation and evaluation of nanostructured lipid carrier (NLC)–based gel of Valdecoxib. Drug Dev Ind Pharm. 2006;32:911–8.

    Article  CAS  Google Scholar 

  23. Mandawgade SD, Patravale VB. Development of SLNs from natural lipids: application to topical delivery of tretinoin. Int J Pharm. 2008;363:132–8.

    Article  CAS  Google Scholar 

  24. Idrees A, Rahman NU, Javaid Z, Kashif M, Aslam I, Abbas K. et al. In vitro evaluation of transdermal patches of flurbiprofen with ethyl cellulose. Acta Pol Pharm. 2014;71:287–95.

    Google Scholar 

  25. Baviskar DT, Parik VB, Jain DJ. Development of Matrix-type transdermal delivery of lornoxicam: in vitro evaluation and pharmacodynamic and pharmacokinetic studies in albino rats. PDA J Pharm Sci Technol. 2013;67:9–22.

    Article  CAS  Google Scholar 

  26. Echevarrı́a L, Blanco-Prı́eto MaJ, Campanero MA, Santoyo S, Ygartua P. Development and validation of a liquid chromatographic method for in vitro mupirocin quantification in both skin layers and percutaneous penetration studies. J Chromatogr B. 2003;796:233–41.

    Article  Google Scholar 

  27. McRipley R, Whitney R. Characterization and quantitation of experimental surgical-wound infections used to evaluate topical antibacterial agents. Antimicrob Agents Chemother. 1976;10:38–44.

    Article  CAS  Google Scholar 

  28. Amrutiya N, Bajaj A, Madan M. Development of microsponges for topical delivery of mupirocin. AAPS PharmSciTech. 2009;10:402–9.

    Article  CAS  Google Scholar 

  29. Sohail M, Ahmad M, Minhas MU, Ali L, Khalid I, Rashid H. Controlled delivery of valsartan by cross-linked polymeric matrices: Synthesis, in vitro and in vivo evaluation. Int J Pharm. 2015;487:110–9.

    Article  CAS  Google Scholar 

  30. Pawlak A, Mucha M. Thermogravimetric and FTIR studies of chitosan blends. Thermochim Acta. 2003;396:153–66.

    Article  CAS  Google Scholar 

  31. Gad Y. Preparation and characterization of poly (2-acrylamido-2-methylpropane-sulfonic acid)/Chitosan hydrogel using gamma irradiation and its application in wastewater treatment. Radiat Phys Chem. 2008;77:1101–7.

    Article  CAS  Google Scholar 

  32. Andrady AL, Torikai A, Kobatake T. Spectral sensitivity of chitosan photodegradation. J Appl Polym Sci. 1996;62:1465–71.

    Article  CAS  Google Scholar 

  33. Zheng Y, Wang A. Removal of heavy metals using polyvinyl alcohol semi-IPN poly (acrylic acid)/tourmaline composite optimized with response surface methodology. Chem Eng J. 2010;162:186–93.

    Article  CAS  Google Scholar 

  34. Rivas BL, Castro A. Preparation and adsorption properties of resins containing amine, sulfonic acid, and carboxylic acid moieties. J Appl Polym Sci. 2003;90:700–5.

    Article  CAS  Google Scholar 

  35. Bojarska J, Maniukiewicz W, Fruziński A, Jędrzejczyk M, Wojciechowski J, Krawczyk H. Structural and spectroscopic characterization and Hirshfeld surface analysis of major component of antibiotic mupirocin–pseudomonic acid A. J Mol Struct. 2014;1076:126–35.

    Article  CAS  Google Scholar 

  36. Perumal S, kumar Ramadass S, Madhan B. Sol–gel processed mupirocin silica microspheres loaded collagen scaffold: a synergistic bio-composite for wound healing. Eur J Pharm Sci. 2014;52:26–33.

    Article  CAS  Google Scholar 

  37. Sreenivasan K. Thermal stability studies of some chitosanmetal ion complexes using differential scanning calorimetry. Polym Degrad Stab. 1996;52:85–87.

    Article  CAS  Google Scholar 

  38. Tirkistani FA. Thermal analysis of chitosan modified by cyclic oxygenated compounds. Polym Degrad Stab. 1998;61:161–4.

    Article  CAS  Google Scholar 

  39. Tirkistani FA. Thermal analysis of some chitosan Schiff bases. Polym Degrad Stab. 1998;60:67–70.

    Article  CAS  Google Scholar 

  40. Schneider LA, Korber A, Grabbe S, Dissemond J. Influence of pH on wound-healing: a new perspective for wound-therapy? Arch Dermatol Res. 2007;298:413–20.

    Article  Google Scholar 

  41. Tsai H-S, Wang Y-Z. Properties of hydrophilic chitosan network membranes by introducing binary crosslink agents. Polym Bull. 2008;60:103–13.

    Article  CAS  Google Scholar 

  42. Varaprasad K, Reddy NN, Ravindra S, Vimala K, Raju KM. Synthesis and characterizations of macroporous poly (acrylamide-2-acrylamido-2-methyl-1-propanesulfonic acid) hydrogels for in vitro drug release of ranitidine hydrochloride. Int J Polym Mater. 2011;60:490–503.

    Article  CAS  Google Scholar 

  43. Varaprasad K, Vimala K, Ravindra S, Reddy NN, Reddy GSM, Raju KM. Biodegradable chitosan hydrogels for in vitro drug release studies of 5-flurouracil an anticancer drug. J Polym Environ. 2012;20:573–82.

    Article  Google Scholar 

  44. Cerchiara T, Luppi B, Bigucci F, Orienti I, Zecchi V. Physically cross-linked chitosan hydrogels as topical vehicles for hydrophilic drugs. J Pharm Pharmacol. 2002;54:1453–9.

    Article  CAS  Google Scholar 

  45. Saikia A, Aggarwal S, Mandal U. Preparation and controlled drug release characteristics of thermoresponsive PEG/poly (NIPAM-co-AMPS) hydrogels. Int J Polym Mater. 2013;62:39–44.

    Article  CAS  Google Scholar 

  46. Mahdavinia G, Pourjavadi A, Hosseinzadeh H, Zohuriaan M. Modified chitosan 4. Superabsorbent hydrogels from poly (acrylic acid-co-acrylamide) grafted chitosan with salt-and pH-responsiveness properties. Eur Polym J. 2004;40:1399–407.

    Article  CAS  Google Scholar 

  47. Ranjha NM, Ayub G, Naseem S, Ansari MT. Preparation and characterization of hybrid pH-sensitive hydrogels of chitosan-co-acrylic acid for controlled release of verapamil. J Mater Sci: Mater Med. 2010;21:2805–16.

    CAS  Google Scholar 

  48. Sohail M, Ahmad M, Minhas MU, Khan S, Khan S, Kousar M. Novel polymeric composites based on carboxymethyl chitosan and poly (acrylic acid): in vitro and in vivo evaluation. J Mater Sci Mater Med. 2017;28:147.

    Article  Google Scholar 

  49. Sung JH, Hwang M-R, Kim JO, Lee JH, Kim YI, Kim JH. et al. Gel characterisation and in vivo evaluation of minocycline-loaded wound dressing with enhanced wound healing using polyvinyl alcohol and chitosan. Int J Pharm. 2010;392:232–40.

    Article  CAS  Google Scholar 

  50. Şenel S, Ikinci G, Kaş S, Yousefi-Rad A, Sargon M, Hıncal A. Chitosan films and hydrogels of chlorhexidine gluconate for oral mucosal delivery. Int J Pharm. 2000;193:197–203.

    Article  Google Scholar 

  51. Bodmeier R, Paeratakul O. Drug release from laminated polymeric films prepared from aqueous latexes. J Pharm Sci. 1990;79:32–36.

    Article  CAS  Google Scholar 

  52. Dorrani M, Kaul M, Parhi A, LaVoie EJ, Pilch DS, Michniak-Kohn B. TXA497 as a topical antibacterial agent: Comparative antistaphylococcal, skin deposition, and skin permeation studies with mupirocin. Int J Pharm. 2014;476:199–204.

    Article  CAS  Google Scholar 

  53. Ribeiro MP, Espiga A, Silva D, Baptista P, Henriques J, Ferreira C. et al. Development of a new chitosan hydrogel for wound dressing. Wound Repair Regen. 2009;17:817–24.

    Article  Google Scholar 

  54. Caon T, Porto LC, Granada A, Tagliari MP, Silva MAS, Simões CMO. et al. Chitosan-decorated polystyrene-b-poly (acrylic acid) polymersomes as novel carriers for topical delivery of finasteride. Eur J Pharm Sci. 2014;52:165–72.

    Article  CAS  Google Scholar 

  55. Rodríguez-Cruz IM, Merino V, Merino M, Díez O, Nácher A, Quintanar-Guerrero D. Polymeric nanospheres as strategy to increase the amount of triclosan retained in the skin: passive diffusion vs. iontophoresis. J Microencapsul. 2013;30:72–80.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Islamia University of Bahawalpur Pakistan for help in performing studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Usman Minhas.

Ethics declarations

Conflict of interest

The authors report no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, S., Minhas, M.U., Ahmad, M. et al. Synthesis and evaluation of topical hydrogel membranes; a novel approach to treat skin disorders. J Mater Sci: Mater Med 29, 191 (2018). https://doi.org/10.1007/s10856-018-6191-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-018-6191-9

Navigation