Skip to main content
Log in

Fabrication of chitin/graphene oxide composite sponges with higher bilirubin adsorption capacity

  • Biomaterials Synthesis and Characterization
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Chitin/graphene oxide (Ch/GO) composite sponges had been synthesized in 11 wt% NaOH/4 wt% urea aqueous solution by a simple method. The structure, thermal stability and mechanical properties of the composite sponges were investigated by scanning electron microscopy, Fourier-transform infrared spectroscopy, wide-angle X-ray diffraction, thermogravimetric analysis, and compressive strength measurements. The results revealed that chitin and GO were mixed homogeneously. Interestingly, the composite sponges showed meso-macroporous structure, which played an important role in improving their adsorption properties. Besides, thermal stability and mechanical properties were significantly improved compared with pure chitin sponges. Taking advantages of these fantastic characteristics, the maximum adsorption capacity of composite sponges for bilirubin was up to 422.9 mg/g under the optimized condition, which was not only significantly higher than the adsorption capacities of pure chitin sponges, but also superior to those of many reported adsorbents for removal of bilirubin. Furthermore, blood compatibility evaluations confirmed that this blended sponges had negligible hemolysis and coagulation. Therefore, this work provided a potential possibility to offer Ch/GO composite sponges for removal of bilirubin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kocakulak M, Denizli A, Rad AY, Pişkin E. New sorbent for bilirubin removal from human plasma: Cibacron Blue F3GA-immobilized poly(EGDMA–HEMA) microbeads. J Chromatogr B Biomed Sci Appl. 1997;693:271–6.

    Article  CAS  Google Scholar 

  2. Berk PD. A computer simulation study relating to the treatment of fulminant hepatic failure by hemoperfusion. Exp Biol Med. 1977;155:535–9.

    Article  CAS  Google Scholar 

  3. Wei H, Han L, Tang Y, Ren J, Zhao Z, Jia L. Highly flexible heparin-modified chitosan/graphene oxide hybrid hydrogel as a super bilirubin adsorbent with excellent hemocompatibility. J Mater Chem B. 2015;3:1646–54.

    Article  CAS  Google Scholar 

  4. Xu CX, Tang XJ, Niu Z, Li ZM. Studies of adsorbents for hemoperfusion in artificial liver support. I. Preparation and in vitro studies of cross-linked agarose beads entrapped activated charcoal (CAAC). Int J Artif Organs. 1981;4:200–4.

    Article  CAS  Google Scholar 

  5. Chen Y, Tang X, Xu C, Li Z. Preparation and performance of cross-linked agar encapsulated activated charcoal (CAAC-III). J Microencapsul. 1991;8:327–34.

    Article  CAS  Google Scholar 

  6. Ando K, Shinke K, Yamada S, Koyama T, Takai T, Nakaji S, et al. Fabrication of carbon nanotube sheets and their bilirubin adsorption capacity. Colloids Surf B Biointerfaces. 2009;71:255–9.

    Article  CAS  Google Scholar 

  7. Wei H, Xu L, Ren J, Jia L. Adsorption of bilirubin to magnetic multi-walled carbon nanotubes as a potential application in bound solute dialysis. Colloids Surf A Physicochem Eng Asp. 2012;405:38–44.

    Article  CAS  Google Scholar 

  8. Geiger H, Klepper J, Lux P, Heidland A. Biochemical assessment and clinical evaluation of a bilirubin adsorbent column (BR-350) in critically ill patients with intractable jaundice. Int J Artif Organs. 1992;15:35–9.

    Article  CAS  Google Scholar 

  9. Weber V, Linsberger I, Hauner M, Leistner A, Leistner A, Falkenhagen D. Neutral styrene divinylbenzene copolymers for adsorption of toxins in liver failure. Biomacromolecules. 2008;9:1322–8.

    Article  CAS  Google Scholar 

  10. Wu L, Zhang Z. Preparation of polyamidoamine dendrons supported on chitosan microspheres and the adsorption of bilirubin. J Appl Polym Sci. 2013;130:563–71.

    Article  CAS  Google Scholar 

  11. Ifuku S, Morooka S, Morimoto M, Saimoto H. Acetylation of chitin nanofibers and their transparent nanocomposite films. Biomacromolecules. 2010;11:1326–30.

    Article  CAS  Google Scholar 

  12. Chang C, Chen S, Zhang L. Novel hydrogels prepared via direct dissolution of chitin at low temperature: structure and biocompatibility. J Mater Chem. 2011;21:3865–71.

    Article  CAS  Google Scholar 

  13. Tang H, Zhou W, Zhang L. Adsorption isotherms and kinetics studies of malachite green on chitin hydrogels. J Hazard Mater. 2012;209–210:218–25.

    Article  Google Scholar 

  14. Duan B, Gao H, He M, Zhang L. Hydrophobic modification on surface of chitin sponges for highly effective separation of oil. ACS Appl Mater Interfaces. 2014;6:19933–42.

    Article  CAS  Google Scholar 

  15. Ding B, Cai J, Huang J, Zhang L, Chen Y, Shi X, et al. Facile preparation of robust and biocompatible chitin aerogels. J Mater Chem. 2012;22:5801–9.

    Article  CAS  Google Scholar 

  16. Tamura H, Nagahama H, Tokura S. Preparation of chitin hydrogel under mild conditions. Cellulose. 2006;13:357–64.

    Article  CAS  Google Scholar 

  17. Terbojevich M, Carraro C, Cosani A, Marsano E. Solution studies of the chitin-lithium chloride- N,N -di-methylacetamide system. Carbohydr Res. 1988;180:73–86.

    Article  CAS  Google Scholar 

  18. Ding F, Shi X, Li X, Cai J, Duan B, Du Y. Homogeneous synthesis and characterization of quaternized chitin in NaOH/urea aqueous solution. Carbohydr Polym. 2012;87:422–6.

    Article  CAS  Google Scholar 

  19. Hu X, Du Y, Tang Y, Wang Q, Feng T, Yang J, et al. Solubility and property of chitin in NaOH/urea aqueous solution. Carbohydr Polym. 2007;70:451–8.

    Article  CAS  Google Scholar 

  20. Liu T, Qian L, Li B, Li J, Zhu K, Deng H, et al. Homogeneous synthesis of chitin-based acrylate superabsorbents in NaOH/urea solution. Carbohydr Polym. 2013;94:261–71.

    Article  CAS  Google Scholar 

  21. Coleman JN, Cadek M, Blake R, Nicolosi V, Ryan KP, Belton C, et al. High performance nanotube‐reinforced plastics: understanding the mechanism of strength increase. Adv Funct Mater. 2004;14:791–8.

    Article  CAS  Google Scholar 

  22. González JA, Mazzobre MF, Villanueva ME, Díaz LE, Copello GJ. Chitin hybrid materials reinforced with graphene oxide nanosheets: chemical and mechanical characterisation. RSC Adv. 2014;4:16480–8.

    Article  Google Scholar 

  23. González JA, Villanueva ME, Peralta Ramos ML, Pérez CJ, Piehl LL, Copello GJ. Chitin based hybrid composites reinforced with graphene derivatives: a nanoscale study. RSC Adv. 2015;5:63813–20.

    Article  Google Scholar 

  24. Guo Y, Duan B, Zhou J, Zhu P. Chitin/graphene oxide composite films with enhanced mechanical properties prepared in NaOH/urea aqueous solution. Cellulose. 2014;21:1781–91.

    Article  CAS  Google Scholar 

  25. Ramanathan T, Abdala AA, Stankovich S, Dikin DA, Herrera-Alonso M, Piner RD, et al. Functionalized graphene sheets for polymer nanocomposites. Nat Nanotechnol. 2008;3:327–31.

    Article  CAS  Google Scholar 

  26. Niyogi S, Bekyarova E, Itkis ME, Mcwilliams JL, AndM AH, Haddon RC. Solution properties of graphite and graphene. J Am Chem Soc. 2006;128:7720–1.

    Article  CAS  Google Scholar 

  27. Park S, Lee KS, Bozoklu G, Cai W, Nguyen ST, Ruoff RS. Graphene oxide papers modified by divalent ions-enhancing mechanical properties via chemical cross-linking. ACS Nano. 2008;2:572–8.

    Article  CAS  Google Scholar 

  28. Feng Y, Zhang X, Shen Y, Yoshino K, Feng W. A mechanically strong, flexible and conductive film based on bacterial cellulose/graphene nanocomposite. Carbohydr Polym. 2012;87:644–9.

    Article  CAS  Google Scholar 

  29. Han D, Yan L, Chen W, Li W, Bangal PR. Cellulose/graphite oxide composite films with improved mechanical properties over a wide range of temperature. Carbohydr Polym. 2011;83:966–72.

    Article  CAS  Google Scholar 

  30. Jr WSH, Offeman RE. Preparation of graphitic oxide. J Am Chem Soc. 1958;80:1339.

    Article  Google Scholar 

  31. Han Z, Tang Z, Li P, Yang G, Zheng Q, Yang J. Ammonia solution strengthened three-dimensional macro-porous graphene aerogel. Nanoscale. 2013;5:5462–7.

    Article  CAS  Google Scholar 

  32. Segal LC, Creely J, Martin AEJ, Conrad CM. An empirical method for estimating the degree of crystallinity of native cellulose using the X-Ray diffractometer. Text Res J. 1959;29:786–94.

    Article  CAS  Google Scholar 

  33. Lu Y, Sun Q, She X, Xia Y, Liu Y, Li J, et al. Fabrication and characterisation of α-chitin nanofibers and highly transparent chitin films by pulsed ultrasonication. Carbohydr Polym. 2013;98:1497–504.

    Article  CAS  Google Scholar 

  34. Stankovich S, Piner RD, Nguyen SBT, Ruoff RS. Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon N Y. 2006;44:3342–7.

    Article  CAS  Google Scholar 

  35. Wu K, Yang W, Liu X, Jiao Y, Zhou C. Electrospun porous polyethersulfone (PES) fiber mats with high bilirubin adsorption capacity. Mater Lett. 2016;185:252–5.

    Article  CAS  Google Scholar 

  36. Peng Y-T, Lo C-T. Electrospun porous carbon nanofibers as lithium ion battery anodes. J Solid State Electrochem. 2015;19:3401–10.

    Article  CAS  Google Scholar 

  37. Fan X, Peng W, Li Y, Li X, Wang S, Zhang G, et al. Deoxygenation of exfoliated graphite oxide under alkaline conditions: a green route to graphene preparation. Adv Mater. 2008;20:4490–3.

    Article  CAS  Google Scholar 

  38. Guo Y, Duan B, Cui L, Zhu P. Construction of chitin/graphene oxide hybrid hydrogels. Cellulose. 2015;22:2035–43.

    Article  CAS  Google Scholar 

  39. Zong W, Chen J, Han W, Chen J, Wang Y, Wang W et al. Preparation of chitosan/amino multiwalled carbon nanotubes nanocomposite beads for bilirubin adsorption in hemoperfusion. J Biomed Mater Res. B Appl Biomater. 2018:106B:96–103.

  40. Ma CF, Gao Q, Xia KS, Huang ZY, Han B, Zhou CG. Three-dimensionally porous graphene: A high-performance adsorbent for removal of albumin-bonded bilirubin. Colloids Surf B Biointerfaces. 2017;149:146–53.

    Article  CAS  Google Scholar 

  41. Peng Q, Liu M, Zheng J, Zhou C. Adsorption of dyes in aqueous solutions by chitosan–halloysite nanotubes composite hydrogel beads. Microporous Mesoporous Mater. 2015;201:190–201.

    Article  CAS  Google Scholar 

  42. Ho YS, McKay G. Pseudo-second order model for sorption processes. Process Biochem. 1999;34:451–65.

    Article  CAS  Google Scholar 

  43. Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum. J Chem Phys. 1918;40:1361–403.

    CAS  Google Scholar 

  44. Freundlich H. Of the adsorption of gases. Section II. Kinetics and energetics of gas adsorption. Introductory paper to section II. Trans Faraday Soc. 1932;28:195–201.

    Article  CAS  Google Scholar 

  45. Wu S, Duan B, Zeng X, Lu A, Xu X, Wang Y, et al. Construction of blood compatible lysine-immobilized chitin/carbon nanotube microspheres and potential applications for blood purified therapy. J Mater Chem B. 2017;5:2952–63.

    Article  CAS  Google Scholar 

  46. Li HZ, Fang GZ, Li JY, Ma YM, Ma YL, Jin ZL. Synthesis of polyethyleneimine-microcrystalline cellulose and its adsorption character for bilirubin. Chem Ind Prod. 2009;29:99–103.

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by Science and technology project of Guangdong Province (Grant no 2017B040404006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanpeng Jiao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, X., Cui, S., Li, Z. et al. Fabrication of chitin/graphene oxide composite sponges with higher bilirubin adsorption capacity. J Mater Sci: Mater Med 29, 108 (2018). https://doi.org/10.1007/s10856-018-6107-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-018-6107-8

Navigation