Skip to main content
Log in

Synthesis of highly stable and biocompatible gold nanoparticles for use as a new X-ray contrast agent

  • Engineering and Nano-engineering Approaches for Medical Devices
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

This work reports a novel reduction procedure for the synthesis of Gum Arabic (GA) capped-gold nanoparticles (AuNPs) in glucosammonium formate as a new ionic liquid. The GA coated AuNPs show good stability in physiological media. The synthesized AuNPs were characterized by UV–Vis spectroscopy, transmission electron microscopy, dynamic light scattering and X-ray diffraction analysis. These stable AuNPs are introduced as a new contrast agent for X-ray Computed Tomography (X-ray CT). These nanoparticles have higher contrasting properties than the commercial contrast agent, Visipaque. The precursors used (Gum Arabic and glucose based-ionic liquid) for synthesis of AuNPs are biocompatible and non-toxic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lusic H, Grinstaff MW. X-ray-computed tomography contrast agents. Chem Rev. 2012;113:1641–66.

    Article  Google Scholar 

  2. Kojima C, Umeda Y, Ogawa M, Harada A, Magata Y, Kono K. X-ray computed tomography contrast agents prepared by seeded growth of gold nanoparticles in PEGylated dendrimer. Nanotechnology. 2010;21:245104.

    Article  Google Scholar 

  3. Sumimura T, Sendo T, Itoh Y, Oka M, Oike M, Ito Y, et al. Calcium-dependent injury of human microvascular endothelial cells induced by a variety of iodinated radiographic contrast media. Invest Radiol. 2003;38:366–74.

    CAS  Google Scholar 

  4. McCLennan BL. Adverse reactions to iodinated contrast media: recognition and response. Invest Radiol. 1994;29:S46–50.

    Article  Google Scholar 

  5. Alric C, Taleb J, Duc GL, Mandon C, Billotey C, Meur-Herland AL, et al. Gadolinium chelate coated gold nanoparticles as contrast agents for both X-ray computed tomography and magnetic resonance imaging. J Am Chem Soc. 2008;130:5908–15.

    Article  CAS  Google Scholar 

  6. Hainfeld J, Slatkin D, Focella T, Smilowitz H. Gold nanoparticles: a new X-ray contrast agent. Br J Radiol 2014.

  7. Safavi A, Zeinali S, Yazdani M. Synthesis of biologically stable gold nanoparticles using imidazolium-based amino acid ionic liquids. Amino Acids. 2012;43:1323–30.

    Article  CAS  Google Scholar 

  8. Shahidi S, Iranpour S, Iranpour P, Alavi AA, Mahyari FA, Tohidi M et al. A new X-ray contrast agent based on highly stable Gum Arabic-gold nanoparticles synthesised in deep eutectic solvent. J Exp Nano 2014(ahead-of-print):1-14.

  9. Peng C, Zheng L, Chen Q, Shen M, Guo R, Wang H, et al. PEGylated dendrimer-entrapped gold nanoparticles for in vivo blood pool and tumor imaging by computed tomography. Biomaterials. 2012;33:1107–19.

    Article  CAS  Google Scholar 

  10. Xu C, Tung GA, Sun S. Size and concentration effect of gold nanoparticles on X-ray attenuation as measured on computed tomography. Chem Mater. 2008;20:4167–9.

    Article  CAS  Google Scholar 

  11. Loo L, Guenther RH, Basnayake VR, Lommel SA, Franzen S. Controlled encapsidation of gold nanoparticles by a viral protein shell. J Am Chem Soc. 2006;128:4502–3.

    Article  CAS  Google Scholar 

  12. Bergen JM, Von Recum HA, Goodman TT, Massey AP, Pun SH. Gold nanoparticles as a versatile platform for optimizing physicochemical parameters for targeted drug delivery. Macromol Biosci. 2006;6:506–16.

    Article  CAS  Google Scholar 

  13. Hussain N, Singh B, Sakthivel T, Florence AT. Formulation and stability of surface-tethered DNA–gold–dendron nanoparticles. Int J Pharm. 2003;254:27–31.

    Article  CAS  Google Scholar 

  14. Popovtzer R, Agrawal A, Kotov NA, Popovtzer A, Balter J, Carey TE, et al. Targeted gold nanoparticles enable molecular CT imaging of cancer. Nano Lett. 2008;8:4593–6.

    Article  CAS  Google Scholar 

  15. Kattumuri V, Katti K, Bhaskaran S, Boote EJ, Casteel SW, Fent GM, et al. Gum arabic as a phytochemical construct for the stabilization of gold nanoparticles: in vivo pharmacokinetics and X‐ray‐contrast‐imaging studies. Small. 2007;3:333–41.

    Article  CAS  Google Scholar 

  16. Wu C-C, Chen D-H. Facile green synthesis of gold nanoparticles with gum arabic as a stabilizing agent and reducing agent. Gold Bull. 2010;43:234–40.

    Article  CAS  Google Scholar 

  17. Anderson JL, Ding J, Welton T, Armstrong DW. Characterizing ionic liquids on the basis of multiple solvation interactions. J Am Chem Soc. 2002;124:14247–54.

    Article  CAS  Google Scholar 

  18. Marsh KN, Deev A, Wu AC, Tran E, Klamt A. Room temperature ionic liquids as replacements for conventional solvents–A review. Korean J Chem Eng. 2002;19:357–62.

    Article  CAS  Google Scholar 

  19. Rebelo LP, Canongia Lopes JN, Esperança JM, Filipe E. On the critical temperature, normal boiling point, and vapor pressure of ionic liquids. J Phys Chem B. 2005;109:6040–3.

    Article  CAS  Google Scholar 

  20. Ma Z, Yu J, Dai S. Preparation of inorganic materials using ionic liquids. Adv Mat. 2010;22:261–85.

    Article  CAS  Google Scholar 

  21. Lu W, Fadeev AG, Qi B, Smela E, Mattes BR, Ding J, et al. Use of ionic liquids for π-conjugated polymer electrochemical devices. Science. 2002;297:983–7.

    Article  CAS  Google Scholar 

  22. Wasserscheid P, Keim W. Ionic liquids-new” solutions” for transition metal catalysis. Ange Chem. 2000;39:3772–89.

    Article  CAS  Google Scholar 

  23. Absalan G, Akhond M, Sheikhian L. Partitioning of acidic, basic and neutral amino acids into imidazolium-based ionic liquids. Amino Acids. 2010;39:167–74.

    Article  CAS  Google Scholar 

  24. Safavi A, Zeinali S. Synthesis of highly stable gold nanoparticles using conventional and geminal ionic liquids. Collo Surf A. 2010;362:121–6.

    Article  CAS  Google Scholar 

  25. Fukaya Y, Sugimoto A, Ohno H. Superior solubility of polysaccharides in low viscosity, polar, and halogen-free 1, 3-dialkylimidazolium formates. BMM J. 2006;7:3295–7.

    CAS  Google Scholar 

  26. Bicak N. A new ionic liquid: 2-hydroxy ethylammonium formate. J Mol Liq. 2005;116:15–8.

    Article  CAS  Google Scholar 

  27. Fukumoto K, Yoshizawa M, Ohno H. Room temperature ionic liquids from 20 natural amino acids. J Am Chem Soc. 2005;127:2398–9.

    Article  CAS  Google Scholar 

  28. He S, Guo Z, Zhang Y, Zhang S, Wang J, Gu N. Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata. Mat Lett. 2007;61:3984–7.

    Article  CAS  Google Scholar 

  29. Aslam M, Fu L, Su M, Vijayamohanan K, Dravid VP. Novel one-step synthesis of amine-stabilized aqueous colloidal gold nanoparticles. J Mater Chem. 2004;14:1795–7.

    Article  CAS  Google Scholar 

  30. Matsuura K, Ohno K, Kagaya S, Kitano H. Carboxybetaine polymer‐protected gold nanoparticles: high dispersion stability and resistance against non‐specific adsorption of proteins. Macro Chem Phy. 2007;208:862–73.

    Article  CAS  Google Scholar 

  31. Lee N, Choi SH, Hyeon T, Nano‐Sized CT. Contrast agents. Adv Mater. 2013;25:2641–60.

    Article  CAS  Google Scholar 

  32. Grzelczak M, Pérez-Juste J, Mulvaney P, Liz-Marzán LM. Shape control in gold nanoparticle synthesis. Chem Soc Rev. 2008;37:1783–91.

    Article  CAS  Google Scholar 

  33. Sun IC, Eun DK, Na JH, Lee S, Kim IJ, Youn IC, et al. Heparin‐coated gold nanoparticles for liver‐specific ct imaging. Chem Eur J. 2009;15:13341–7.

    Article  CAS  Google Scholar 

  34. Kim S-H, Kim E-M, Lee C-M, Kim DW, Lim ST, Sohn M-H et al. Synthesis of PEG-iodine-capped gold nanoparticles and their contrast enhancement in in vitro and in vivo for X-ray/CT. J Nano. 2012;:46.

Download references

Acknowledgements

The authors wish to express their gratitude to Shiraz University of Medical Sciences, Iran’s National Elites Foundation and Shiraz University Research Council for the support of this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pooya Iranpour or Afsaneh Safavi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iranpour, P., Ajamian, M., Safavi, A. et al. Synthesis of highly stable and biocompatible gold nanoparticles for use as a new X-ray contrast agent. J Mater Sci: Mater Med 29, 48 (2018). https://doi.org/10.1007/s10856-018-6053-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-018-6053-5

Navigation