Skip to main content

Advertisement

Log in

Wetting ability of biological liquids in presence of metallic nanoparticles

  • Engineering and Nano-engineering Approaches for Medical Devices
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The wetting ability of water and of some biological liquids was measured on different biocompatible surfaces with and without different colloidal metals. Insoluble nanoparticles disperse in biological tissues enhance some properties, such as the interface adhesion between two surfaces, the X-ray contrast of medical images and the absorbed dose during radiotherapy treatments. The introduction of nanoparticles in the liquids generally improves the wetting ability and changes other properties of the solution, due to the different distribution of the adhesion forces, to the nature, morphology and concentration of the added nanoparticles. An investigation on the contact angle of the liquid drops, physiological liquids, including the human blood, placed on different substrates (polymers, ceramics and metals) with and without the use of metallic nanoparticles is presented, evaluated and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Huang X, Jain PK, El-Sayed IH, El-Sayed MA. Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Laser Med Sci. 2008; Springer, doi:10.1007/s10103-007-0470-x.

  2. Ghosh P, Han G, De M, Kyu Kim C, Rotello VM. Gold nanoparticles in delivery applications. Adv Drug Deliv Rev. 2008;60:1307–15.

    Article  Google Scholar 

  3. Hung L, Lee AP. Microfluidic devices for the synthesis of nanoparticles and biomaterials. J Med Biol Eng. 2007;27(1):1–6.

    Google Scholar 

  4. Torrisi L. Radiotherapy improvements by using Au nanoparticles. Recent Pat Nanotechnol. 2015;9(2):114–25.

  5. Visaria RK, Griffin RJ, Williams BW, Ebbini ES, Paciotti GF, Song CW, Bischof JC. Enhancement of tumor thermal therapy using gold nanoparticle–assisted tumor necrosis factor-α delivery. Mol Carcer Ther. 2006;5(4):797–808.

    Article  Google Scholar 

  6. Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for gram-negative bacteria. J Colloid Interface Sci. 2004;275:177–82.

    Article  Google Scholar 

  7. Foti A, Foti AM, Torrisi L. Auger and Pixe microanalysis of intrauterine devices (IUDs). Clin Exp Obstet Gynecol. 1990;7(3–4):185–94.

    Google Scholar 

  8. Scolaro C. Study, physical characterization and wetting ability aspects of biomaterials. PhD Thesis, Doctorate in Physics, University of Messina Publ. (Italy), A.A. 2014.

  9. Tzoneva-Velinova R. The wettability of biomaterials determines the protein adsorption and the cellular responses. PhD Thesis, Institute of Chemistry, Universität Potsdam (Germany), 2003.

  10. van Wachem PB, Beugeling T, Feijen J, Bantjes A, Detmers JP, van Aken WG. Interaction of cultured human endothelial cells with polymeric surfaces of different wettabilities. Biomaterials. 1985;6(6):403–8.

  11. Kara ML, Lyndon J. The impact of contact angle on the biocompatibility of biomaterials. Optometry Vision Sci. 2010;87(6):387–99.

    Google Scholar 

  12. Xu LC, Siedlecki CA. Effects of surface wettability and contact time on protein adhesion to biomaterial surfaces. Biomaterials. 2007;28(22):3273–83.

    Article  Google Scholar 

  13. Bertina RM, Koeleman BPC, Koster T, Rosendaal FR, Dirven RJ, De Ronde H, Van der Velden PA, Reitsma PH. Mutation in blood coagulation factor V associated with resistance to activated protein C. Letter to Nature. 1994;369:64–7.

    Article  Google Scholar 

  14. Torrisi L, Cutroneo M, Ceccio G. Effect of metallic nanoparticles in thin foils for laser ion acceleration. Phys Scripta. 2015;9:015603.

    Article  Google Scholar 

  15. Cutroneo M, Torrisi L, Calcagno L, Torrisi A. Characterization of thin films for TNSA laser irradiation. J Phys Conf Ser. 2014;508(012012):1–7.

    Google Scholar 

  16. Torrisi L, Gentile C, Visco AM, Campo N. Wetting modificastions of UHMWPE surfaces induced by ion implantation. Rad Eff and Def in Solids. 2003;158:731–41.

    Article  Google Scholar 

  17. Aksay IA, Hoge CE, Pask JA. Wetting under chemical equilibrium and nonequilibrium conditions. J Phys Chem. 1974;78(12):1178–83.

    Article  Google Scholar 

  18. Atae-Allah C, Cabrerizo-Vılchez M, Gomez-Lopera JF, Holgado-Terriza JA, Roman-Roldan R, Luque-Escamilla PL. Measurement of surface tension and contact angle using entropic edge detection. Meas Sci Technol. 2001;12:288–98.

    Article  Google Scholar 

  19. Pries AR, Neuhaus D, Gaehtgens P. Blood viscosity in tube flow: dependence on diameter and hematocrit. Am J Physiol Heart Circ Physiol. 1992;263(6):H1770–8.

    Google Scholar 

  20. Lehtinen KariEJ, Zachariah MichaelR. Effect of coalescence energy release on the temporal shape evolution of nanoparticles. Phys Rev B. 2001;63:205402.

    Article  Google Scholar 

  21. Torrisi L, Scolaro C. Treatment techniques on aluminum to modify the surface wetting properties. Acta Phys Pol A. 2015;128(1):48–53.

    Article  Google Scholar 

  22. Carroll BJ. The accurate measurement of contact angle, phase contact areas, drop volume, and laplace excess pressure in drop-on-fiber systems. J Colloid Interface Sci. 1976;57(3):488–95.

    Article  Google Scholar 

  23. Salata OV. Applications of nanoparticles in biology and medicine. J Nanobiotechnology. 2004;2(3):1–6.

    Google Scholar 

  24. Torrisi L, Restuccia N, Cuzzocrea S, Paterniti I, Ielo I, Pergolizzi S, Cutroneo M, Kovacik L. Laser-produced Au nanoparticles as X-ray contrast agents for diagnostic imaging. Gold Bull. 2017;Online First 1-10, doi:10.1007/s13404-017-0195-y.

  25. Ingham B, Lim TH, Dotzler CJ, Henning A, Toney MF, Tilley RD. How nanoparticles coalesce: an in situ study of Au nanoparticle aggregation and grain growth. Chem Mater. 2011;23(14):3312–7.

    Article  Google Scholar 

Download references

Acknowledgements

This work was performed thanks to the Messina University support given through the project “Research and Mobility” Coordinated by Prof. L. Torrisi n. 74893496.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Torrisi.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torrisi, L., Scolaro, C. & Restuccia, N. Wetting ability of biological liquids in presence of metallic nanoparticles. J Mater Sci: Mater Med 28, 63 (2017). https://doi.org/10.1007/s10856-017-5871-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-017-5871-1

Keywords

Navigation