Cytocompatibility testing of cyclodextrin-functionalized antimicrobial textiles—a comprehensive approach

  • Kirsten Reddersen
  • Susanne Finger
  • Michael Zieger
  • Cornelia Wiegand
  • Hans-Jürgen Buschmann
  • Peter Elsner
  • Uta-Christina Hipler
Biocompatibility Studies Original Research
Part of the following topical collections:
  1. Biocompatibility Studies


Functionalized textiles can be used in wound management to reduce the microbial burden in the wound area, to prevent wound infections, and to avoid cross-contamination between patients. In the present study, a comprehensive in vitro approach to enable the assessment of antibacterial activity of functionalized textiles and cytotoxicity of cyclodextrin (CD)-complexes with chlorhexidine diacetate (CHX), iodine (IOD), and polihexanide (PHMB) is suggested to evaluate their properties for supporting optimal conditions for wound healing. For all β-CD-antiseptic functionalized cotton samples a strong antibacterial effect on the Gram-positive bacteria Staphylococcus aureus and Staphylococcus epidermidis as well as on the Gram-negative bacteria Klebsiella pneumoniae and Escherichia coli was proven. In addition, β-CD-CHX and β-CD-PHMB were effective against the yeast Candida albicans. The growth of Pseudomonas aeruginosa could be reduced significantly by β-CD-IOD and β-CD-PHMB. The established comprehensive testing system for determination of biocompatibility on human HaCaT keratinocytes is suitable for obtaining robust data on cell viability, cytotoxicity and mode of cell death of the β-CD-antiseptic-complexes. The promising results of the high antimicrobial activity of these functionalized textiles show the high potential of such materials in medical applications.


HaCaT Cell High Antimicrobial Activity HaCaT Keratinocytes Japanese Industrial Standard Untreated Cotton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to acknowledge support of this work by 15997BG grant from Arbeitsgemeinschaft Industrieller Forschungsvereinigungen (AIF).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    White RJ, Cutting K, Kingsley A. Topical antimicrobials in the control of wound bioburden. Ostomy Wound Manag. 2006;52(8):26–58.Google Scholar
  2. 2.
    McDonnell G, Russell AD. Antiseptics and disinfectants: activity, action, and resistance. Clin Microbiol Rev. 1999;12(1):147–79.Google Scholar
  3. 3.
    Wiegand C, Heinze T, Hipler UC. Comparative in vitro study on cytotoxicity, antimicrobial activity, and binding capacity for pathophysiological factors in chronic wounds of alginate and silver-containing alginate. Wound Repair Regen. 2009;17(4):511–21.CrossRefGoogle Scholar
  4. 4.
    Ip M, Lui SL, Poon VK, Lung I, Burd A. Antimicrobial activities of silver dressings: an in vitro comparison. J Med Microbiol. 2006;55(Pt 1):59–63.CrossRefGoogle Scholar
  5. 5.
    Hidalgo E, Bartolome R, Barroso C, Moreno A, Dominguez C. Silver nitrate: antimicrobial activity related to cytotoxicity in cultured human fibroblasts. Skin Pharmacol Appl. 1998;11(3):140–51.CrossRefGoogle Scholar
  6. 6.
    Szejtli J. Introduction and general overview of cyclodextrin chemistry. Chem Rev. 1998;98(5):1743–54.CrossRefGoogle Scholar
  7. 7.
    Del Valle EMM. Cyclodextrins and their uses: a review. Process Biochem. 2004;39(9):1033–46.CrossRefGoogle Scholar
  8. 8.
    Loftsson T, Duchene D. Cyclodextrins and their pharmaceutical applications. Int J Pharm. 2007;329(1–2):1–11.CrossRefGoogle Scholar
  9. 9.
    Stella VJ, He Q. Cyclodextrins. Toxicol Pathol. 2008;36(1):30–42.CrossRefGoogle Scholar
  10. 10.
    Kurkov SV, Loftsson T. Cyclodextrins. Int J Pharm. 2013;453(1):167–80.CrossRefGoogle Scholar
  11. 11.
    El Ghoul Y, Blanchemain N, Laurent T, Campagne C, El Achari A, Roudesli S, et al. Chemical, biological and microbiological evaluation of cyclodextrin finished polyamide inguinal meshes. Acta Biomater. 2008;4(5):1392–400.CrossRefGoogle Scholar
  12. 12.
    Hoang Thi TH, Chai F, Lepretre S, Blanchemain N, Martel B, Siepmann F, et al. Bone implants modified with cyclodextrin: study of drug release in bulk fluid and into agarose gel. Int J Pharm. 2010;400(1–2):74–85.CrossRefGoogle Scholar
  13. 13.
    Laurent T, Kacem I, Blanchemain N, Cazaux F, Neut C, Hildebrand HF, et al. Cyclodextrin and maltodextrin finishing of a polypropylene abdominal wall implant for the prolonged delivery of ciprofloxacin. Acta Biomater. 2011;7(8):3141–9.CrossRefGoogle Scholar
  14. 14.
    Buschmann HJ. Applications in the food and textile industries. In: Schneider HJ, editor. Applications of supramolecular chemistry. Boca Raton, FL: CRC Press; 2012. p. 417–34.Google Scholar
  15. 15.
    Fouda MM, Knittel D, Hipler UC, Elsner P, Schollmeyer E. Antimycotic influence of beta-cyclodextrin complexes - in vitro measurements using laser nephelometry in microtiter plates. Int J Pharm. 2006;311(1–2):113–21.CrossRefGoogle Scholar
  16. 16.
    Aleem O, Kuchekar B, Pore Y, Late S. Effect of beta-cyclodextrin and hydroxypropyl beta-cyclodextrin complexation on physicochemical properties and antimicrobial activity of cefdinir. J Pharmac Biomed. 2008;47(3):535–40.CrossRefGoogle Scholar
  17. 17.
    Teixeira KI, Denadai AM, Sinisterra RD, Cortes ME. Cyclodextrin modulates the cytotoxic effects of chlorhexidine on microrganisms and cells in vitro. Drug Deliv. 2015;22(3):444–53.CrossRefGoogle Scholar
  18. 18.
    Müller G, Kramer A. Biocompatibility index of antiseptic agents by parallel assessment of antimicrobial activity and cellular cytotoxicity. J Antimicrob Chemoth. 2008;61(6):1281–7.CrossRefGoogle Scholar
  19. 19.
    Müller G, Koburger T, Jethon FUW, Kramer A. Vergleich der bakterioziden Wirksamkeit und In-vitro-Zytotoxizität von Lavasept® und Prontosan®. GMS Krankenhaushygiene interdisziplinar. 2007;2(2):Doc42.Google Scholar
  20. 20.
    Kloth LC, Berman JE, Laatsch LJ, Kirchner PA. Bactericidal and cytotoxic effects of chloramine-T on wound pathogens and human fibroblasts in vitro. Advances in Skin & Wound Care. 2007;20(6):331–45.CrossRefGoogle Scholar
  21. 21.
    Wiegand C, Hipler UC. Evaluation of biocompatibility and cytotoxicity using keratinocyte and fibroblast cultures. Skin Pharmacol Physiol. 2009;22(2):74–82.CrossRefGoogle Scholar
  22. 22.
    Lindner K, Szente L, Szejtli J. Food flavoring with β-cyclodextrin complexed flavour substances. Acta Alimentaria. 1981;10:175–86.Google Scholar
  23. 23.
    Wang T, Li B, Feng Y, Guo Q. Preparation, quantitative analysis and bacteriostasis of solid state iodine inclusion complex with b-cyclodextrin. J Incl Phenom Macrocycl Chem. 2011;69(1):255–62.CrossRefGoogle Scholar
  24. 24.
    Reuscher H, Hirsenkorn R. Beta W7 MCT – New Ways in Surface Modification. Proc 8 Int Symp Cyclodextrins. 1996:553–558.Google Scholar
  25. 25.
    Ameri Dehabadi V, Buschmann HJ, Gutmann JS. Spectrophotometric estimation of the accessible inclusion sites of b-cyclodextrin fixed on cotton fabrics using phenolic dyestuffs. Anal Methods. 2014;6:3382–7.Google Scholar
  26. 26.
    Hipler UC, Schonfelder U, Hipler C, Elsner P. Influence of cyclodextrins on the proliferation of HaCaT keratinocytes in vitro. J Biomed Mater Res A. 2007;83(1):70–9.CrossRefGoogle Scholar
  27. 27.
    Niles AL, Moravec RA, Riss TL. Multiplex caspase activity and cytotoxicity assays. Methods Mol Biol. 2008;414:151–62.Google Scholar
  28. 28.
    Niles AL, Moravec RA, Eric Hesselberth P, Scurria MA, Daily WJ, Riss TL. A homogeneous assay to measure live and dead cells in the same sample by detecting different protease markers. Anal Biochem. 2007;366(2):197–206.CrossRefGoogle Scholar
  29. 29.
    Percival SL, Hill KE, Williams DW, Hooper SJ, Thomas DW, Costerton JW. A review of the scientific evidence for biofilms in wounds. Wound Repair Regen. 2012;20(5):647–57.CrossRefGoogle Scholar
  30. 30.
    Cabrera CE, Gómez RF, Zuñiga AE, Corral RH, López B, Chávez M. Epidemiology of nosocomial bacteria -resistant to antimicrobials. Colomb Med. 2011;42(1):117–25.Google Scholar
  31. 31.
    Finger S, Wiegand C, Buschmann HJ, Hipler UC. Antimicrobial properties of cyclodextrin-antiseptics-complexes determined by microplate laser nephelometry and ATP bioluminescence assay. Int J Pharm. 2012;436(1–2):851–6.CrossRefGoogle Scholar
  32. 32.
    Finger S, Wiegand C, Buschmann HJ, Hipler UC. Antibacterial properties of cyclodextrin-antiseptics-complexes determined by microplate laser nephelometry and ATP bioluminescence assay. Int J Pharm. 2013;452(1–2):188–93.CrossRefGoogle Scholar
  33. 33.
    Wlodkowic D, Telford W, Skommer J, Darzynkiewicz Z. Apoptosis and beyond: cytometry in studies of programmed cell death. Methods Cell Biol. 2011;103:55–98.CrossRefGoogle Scholar
  34. 34.
    Budihardjo I, Oliver H, Lutter M, Luo X, Wang X. Biochemical pathways of caspase activation during apoptosis. Annu Rev Cell Dev Biol. 1999;15:269–90.CrossRefGoogle Scholar
  35. 35.
    Schonfelder U, Radestock A, Elsner P, Hipler UC. Cyclodextrin-induced apoptosis in human keratinocytes is caspase-8 dependent and accompanied by mitochondrial cytochrome c release. Exp Dermatol. 2006;15(11):883–90.CrossRefGoogle Scholar
  36. 36.
    Wutzler P, Sauerbrei A, Klocking R, Brogmann B, Reimer K. Virucidal activity and cytotoxicity of the liposomal formulation of povidone-iodine. Antiviral Res. 2002;54(2):89–97.CrossRefGoogle Scholar
  37. 37.
    Shrivastava A, Tiwari M, Sinha RA, Kumar A, Balapure AK, Bajpai VK, et al. Molecular iodine induces caspase-independent apoptosis in human breast carcinoma cells involving the mitochondria-mediated pathway. J Biol Chem. 2006;281(28):19762–71.CrossRefGoogle Scholar
  38. 38.
    Liu XH, Chen GG, Vlantis AC, Tse GM, van Hasselt CA. Iodine induces apoptosis via regulating MAPKs-related p53, p21, and Bcl-xL in thyroid cancer cells. Mol Cell Endocrinol. 2010;320(1–2):128–35.CrossRefGoogle Scholar
  39. 39.
    Vitale M, Di Matola T, D’Ascoli F, Salzano S, Bogazzi F, Fenzi G, et al. Iodide excess induces apoptosis in thyroid cells through a p53-independent mechanism involving oxidative stress. Endocrinology. 2000;141(2):598–605.Google Scholar
  40. 40.
    Faria G, Cardoso CRB, Larson RE, Silva JS, Rossi MA. Chlorhexidine-induced apoptosis or necrosis in L929 fibroblasts: a role for endoplasmic reticulum stress. Toxicol Appl Pharm. 2009;234(2):256–65.CrossRefGoogle Scholar
  41. 41.
    Giannelli M, Chellini F, Margheri M, Tonelli P, Tani A. Effect of chlorhexidine digluconate on different cell types: a molecular and ultrastructural investigation. Toxicol In Vitro. 2008;22(2):308–17.CrossRefGoogle Scholar
  42. 42.
    Rohner E, Seeger JB, Hoff P, Dahn-Wollenberg S, Perka C, Matziolis G. Toxicity of polyhexanide and hydrogen peroxide on human chondrocytes in vitro. Orthopedics. 2011;34(7):e290–4.Google Scholar
  43. 43.
    Creppy EE, Diallo A, Moukha S, Eklu-Gadegbeku C, Cros D. Study of epigenetic properties of Poly(HexaMethylene Biguanide) hydrochloride (PHMB). Int J Environ Res Public Health. 2014;11(8):8069–92.CrossRefGoogle Scholar
  44. 44.
    Wiegand C, Abel M, Kramer A, Mueller G, Ruth P, Hipler UC. Proliferationsförderung und Biokompatibilität von Polihexanid. GMS Krankenhaushygiene Interdisziplinar. 2007;2(2):Doc43.Google Scholar
  45. 45.
    Niles AL, Moravec RA, Riss TL. In vitro viability and cytotoxicity testing and same-well multi-parametric combinations for high throughput screening. Curr Chem Genomics. 2009;3:33–41.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of DermatologyUniversity Hospital JenaJenaGermany
  2. 2.Deutsches Textilforschungszentrum Nord-West e.V. KrefeldKrefeldGermany

Personalised recommendations