Skip to main content
Log in

Chemical stability and osteogenic activity of plasma-sprayed boron-modified calcium silicate-based coatings

  • Biomaterials Synthesis and Characterization
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

In recent years, CaSiO3 bio-ceramic coatings have attracted great attention because of their good bioactivity. However, their high degradation rates in physiological environment restrict their practical applications. In this work, boron-modified CaSiO3 ceramic (Ca11Si4B2O22, B-CS) coating was developed on Ti substrates by plasma-spraying technique attempting to obtain enhanced chemical stability and osteogenic activity. The B-CS coating possessed significantly increased chemical stability due to the introduction of boron and consequently the modified crystal structure, while maintaining good bioactivity. Scanning electron microscope and immunofluorescence studies showed that better cellular adhesion and extinctive filopodia-like processes were observed on the B-CS coating. Compared with the pure CaSiO3 (CS) coating, the B-CS coating promoted MC3T3-E1 cells attachment and proliferation. In addition, enhanced collagen I (COL-I) secretion, alkaline phosphatase activity, and extracellular matrix mineralization levels were detected from the B-CS coating. According to RT-PCR results, notable up-regulation expressions of mineralized tissue-related genes, such as runt-related transcription factor 2 (Runx2), bone sialoprotein and osteocalcin, and bone morphogenetic protein 7 (BMP-7) were observed on the B-CS coating compared with the CS coating. The above results suggested that Ca11Si4B2O22 coatings possess excellent osteogenic activity and might be a promising candidate for orthopedic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Xie Y, Liu X, Ding C, Chu PK. Bioconductivity and mechanical properties of plasma-sprayed dicalcium silicate/zirconia composite coating. Mater Sci Eng: C. 2005;25(4):509–15.

    Article  Google Scholar 

  2. Liu X, Xie Y, Ding C, Chu PK. Early apatite deposition and osteoblast growth on plasma-sprayed dicalcium silicate coating. J Biomed Mater Res Part A. 2005;74(3):356–65.

    Article  Google Scholar 

  3. Xue W, Liu X, Zheng X, Ding C. In vivo evaluation of plasma-sprayed wollastonite coating. Biomaterials. 2005;26(17):3455–60.

    Article  Google Scholar 

  4. Wu C, Ramaswamy Y, Soeparto A, Zreiqat H. Incorporation of titanium into calcium silicate improved their chemical stability and biological properties. J Biomed Mater Res Part A. 2008;86(2):402–10.

    Article  Google Scholar 

  5. Zhu Y, Zhu M, He X, Zhang J, Tao C. Substitutions of strontium in mesoporous calcium silicate and their physicochemical and biological properties. Acta Biomater. 2013;9(5):6723–31.

    Article  Google Scholar 

  6. Li K, Yu J, Xie Y, Huang L, Ye X, Zheng X. Chemical stability and antimicrobial activity of plasma sprayed bioactive Ca2ZnSi2O7 coating. J Mater Sci – Mater Med. 2011;22(12):2781–9.

    Article  Google Scholar 

  7. Hu D, Li K, Xie Y, Pan H, Zhao J, Huang L, et al. Different response of osteoblastic cells to Mg2+, Zn2+ and Sr2+ doped calcium silicate coatings. J Mater Sci – Mater Med. 2016;27(3):27–56.

    Google Scholar 

  8. Liang Y, Xie Y, Ji H, Huang L, Zheng X. Excellent stability of plasma-sprayed bioactive Ca3ZrSi2O9 ceramic coating on Ti–6Al–4V. Appl Surf Sci. 2010;256(14):4677–81.

    Article  Google Scholar 

  9. Zhang N, Molenda JA, Mankoci S, Zhou X, Murphy WL, Sahai N. Crystal structures of CaSiO3 polymorphs control growth and osteogenic differentiation of human mesenchymal stem cells on bioceramic surfaces. Biomater Sci. 2013;1(10):1101–10.

    Article  Google Scholar 

  10. Bose S, Fielding G, Tarafder S, Bandyopadhyay A. Understanding of dopant-induced osteogenesis and angiogenesis in calcium phosphate ceramics. Trends Biotechnol. 2013;31(10):594–605.

    Article  Google Scholar 

  11. Wu C, Chen Z, Yi D, Chang J, Xiao Y. Multidirectional effects of Sr-, Mg-, and Si-containing bioceramic coatings with high bonding strength on inflammation, osteoclastogenesis, and osteogenesis. ACS Appl Mater Inter. 2014;6(6):4264–76.

    Article  Google Scholar 

  12. Chen Z, Yi D, Zheng X, Chang J, Wu C, Xiao Y. Nutrient element-based bioceramic coatings on titanium alloy stimulating osteogenesis by inducing beneficial osteoimmmunomodulation. J Mater Chem B. 2014;2(36):6030.

    Article  Google Scholar 

  13. Sharmin N, Hasan MS, Parsons AJ, Furniss D, Scotchford CA, Ahmed I, et al. Effect of boron addition on the thermal, degradation, and cytocompatibility properties of phosphate-based glasses. BiomedResInt. 2013;2013:902427. doi:10.1155/2013/902427.

    Google Scholar 

  14. Saranti A, Koutselas I, Karakassides MA. Bioactive glasses in the system CaO–B2O3–P2O5: Preparation, structural study and in vitro evaluation. J Non-Cryst Solids. 2006;352(5):390–8.

    Article  Google Scholar 

  15. Gautam C, Yadav AK, Singh AK. A review on infrared spectroscopy of borate glasses with effects of different additives. ISRN Ceramics. 2012;2012:1–17. doi:10.5402/2012/428497.

    Article  Google Scholar 

  16. Massera J, Claireaux C, Lehtonen T, Tuominen J, Hupa L, Hupa M. Control of the thermal properties of slow bioresorbable glasses by boron addition. J Non-Cryst Solids. 2011;357(21):3623–30.

    Article  Google Scholar 

  17. Karabulut M, Yuce B, Bozdogan O, Ertap H, Mammadov GM. Effect of boron addition on the structure and properties of iron phosphate glasses. J Non-Cryst Solids. 2011;357(5):1455–62.

    Article  Google Scholar 

  18. Palacios C. The role of nutrients in bone health, from A to Z. Crit Rev Food Sci Nutr. 2006;46(8):621–8.

    Article  Google Scholar 

  19. Nielsen FH. Update on human health effects of boron. J Trace Elem Med Biol. 2014;28(4):383–7.

    Article  Google Scholar 

  20. Nielsen FH, Meacham SL. Growing evidence for human health benefits of boron. J Evid Based Complementary Altern Med. 2011;16(3):169–80.

    Article  Google Scholar 

  21. Nielsen FH. Dietary fat composition modifies the effect of boron on bone characteristics and plasma lipids in rats. BioFactors. 2004;20(3):161–71.

    Article  Google Scholar 

  22. Gorustovich AA, Steimetz T, Nielsen FH, Guglielmotti MB. A histomorphometric study of alveolar bone modelling and remodelling in mice fed a boron-deficient diet. Arch Oral Biol. 2008;53(7):677–82.

    Article  Google Scholar 

  23. Hakki SS, Bozkurt BS, Hakki EE. Boron regulates mineralized tissue-associated proteins in osteoblasts (MC3T3-E1). J Trace Elem Med Biol. 2010;24(4):243–50.

    Article  Google Scholar 

  24. Tasli PN, Dogan A, Demirci S, Sahin F. Boron enhances odontogenic and osteogenic differentiation of human tooth germ stem cells (hTGSCs) in vitro. Biol Trace Elem Res. 2013;153(1–3):419–27.

    Article  Google Scholar 

  25. Haro Durand LA, Vargas GE, Romero NM, Vera-Mesones R, Porto-López JM, Boccaccini AR, et al. Angiogenic effects of ionic dissolution products released from a boron-doped 45S5 bioactive glass. J Mater Chem B. 2015;3(6):1142–8.

    Article  Google Scholar 

  26. Zhao S, Wang H, Zhang Y, Huang W, Rahaman MN, Liu Z, et al. Copper-doped borosilicate bioactive glass scaffolds with improved angiogenic and osteogenic capacity for repairing osseous defects. Acta Biomater. 2015;14:185–96.

    Article  Google Scholar 

  27. Gorustovich AA, Lopez JM, Guglielmotti MB, Cabrini RL. Biological performance of boron-modified bioactive glass particles implanted in rat tibia bone marrow. Biomed Mater. 2006;1(3):100–5.

    Article  Google Scholar 

  28. Bi L, Rahaman MN, Day DE, Brown Z, Samujh C, Liu X, et al. Effect of bioactive borate glass microstructure on bone regeneration, angiogenesis, and hydroxyapatite conversion in a rat calvarial defect model. Acta Biomater. 2013;9(8):8015–26.

    Article  Google Scholar 

  29. Suzuki K, Hira I. Study on the System of 2CaO·SiO2-3CaO·B2O3. Ceram Soc Jpn. 1970;78(6):189–94.

    Google Scholar 

  30. Fletcher JG, Glasser FP. Phase relations in the system CaO-B2O3-SiO2. J Mater Sci. 1993;28:2677–86. doi:10.1007/BF00356203.

    Article  Google Scholar 

  31. Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006;27(15):2907–15.

    Article  Google Scholar 

  32. Xue W, Liu X, Zheng X, Ding C. Plasma-sprayed diopside coatings for biomedical applications. Surf Coat Technol. 2004;185(2–3):340–5.

    Article  Google Scholar 

  33. Olmo N. Bioactive sol–gel glasses with and without a hydroxycarbonate apatite layer as substrates for osteoblast cell adhesion and proliferation. Biomaterials. 2003;24(20):3383–93.

    Article  Google Scholar 

  34. Hesse K-F. Refinement of the crystal structure of wollastonite-2M (parawollastonite). Z Kristallogr. 1984;168:93–8.

    Article  Google Scholar 

  35. Smith JV, Karle IL, Hauptman H, Karle J. The crystal structure of spurrite, Ca5(SiO4)2CO3. II. Description of structure. Acta Cryst. 1960;13:454–8.

    Article  Google Scholar 

  36. Haro Durand LA, Góngora A, Porto López JM, Boccaccini AR, Zago MP, Baldi A, et al. In vitro endothelial cell response to ionic dissolution products from boron-doped bioactive glass in the SiO2–CaO–P2O5–Na2O system. J Mater Chem B. 2014;2(43):7620–30.

    Article  Google Scholar 

  37. Han P, Wu C, Xiao Y. The effect of silicate ions on proliferation, osteogenic differentiation and cell signalling pathways (WNT and SHH) of bone marrow stromal cells. Biomater Sci. 2013;1(4):379–92.

    Article  Google Scholar 

  38. Park M, Li Q, Shcheynikov N, Zeng W, Muallem S. NaBC1 is a ubiquitous electrogenic Na+ -coupled borate transporter essential for cellular boron homeostasis and cell growth and proliferation. Mol Cell. 2004;16(3):331–41.

    Article  Google Scholar 

  39. Park M, Li Q, Shcheynikov N, Muallem S, Zeng W. Borate transport and cell growth and proliferation: not only in plants. Cell Cycle. 2005;4(1):24–6.

    Article  Google Scholar 

  40. Li X, Wang X, Jiang X, Yamaguchi M, Ito A, Bando Y, et al. Boron nitride nanotube-enhanced osteogenic differentiation of mesenchymal stem cells. J Biomed Mater Res B Appl Biomater. 2016;104(2):323–9.

    Article  Google Scholar 

  41. Dogan A, Demirci S, Bayir Y, Halici Z, Karakus E, Aydin A, et al. Boron containing poly-(lactide-co-glycolide) (PLGA) scaffolds for bone tissue engineering. Mater Sci Eng, C. 2014;44:246–53.

    Article  Google Scholar 

  42. TA O, M A, V S, LM B, L W, MS T, et al. Progressive development of the rat osteoblast phenotype in vitro: reciprocal relationships in expression of genes associated with osteoblast proliferation and differentiation during formation of the bone extracellular matrix. J Cell Physiol. 1990;143(3):420–30.

    Article  Google Scholar 

  43. Stucki U, Schmid J, Hammerle CF, Lang NP. Temporal and local appearance of alkaline phosphatase activity in early stages of guided bone regeneration. A descriptive histochemical study in humans. Clin Oral Impl Res. 2001;12:121–7.

    Article  Google Scholar 

  44. Ying X, Cheng S, Wang W, Lin Z, Chen Q, Zhang W, et al. Effect of boron on osteogenic differentiation of human bone marrow stromal cells. Biol Trace Elem Res. 2011;144(1-3):306–15.

    Article  Google Scholar 

  45. Franceschi RT, Ge C, Xiao G, Roca H, Jiang D. Transcriptional regulation of osteoblasts. Cells Tissues Organs. 2009;189(1–4):144–52.

    Google Scholar 

  46. Gersbach CA, Byers BA, Pavlath GK, Garcia AJ. Runx2/Cbfa1 stimulates transdifferentiation of primary skeletal myoblasts into a mineralizing osteoblastic phenotype. Exp Cell Res. 2004;300(2):406–17.

    Article  Google Scholar 

  47. Xiao YT, Xiang LX, Shao JZ. Bone morphogenetic protein. Biochem Biophys Res Commun. 2007;362(3):550–3.

    Article  Google Scholar 

  48. Phimphilai M, Zhao Z, Boules H, Roca H, Franceschi RT. BMP signaling is required for RUNX2-dependent induction of the osteoblast phenotype. J Bone Miner Res. 2006;21(4):637–46.

    Article  Google Scholar 

  49. Chimal-Monroy J, Rodriguez-Leon J, Montero JA, Gañan Y, Macias D, Merino R, et al. Analysis of the molecular cascade responsible for mesodermal limb chondrogenesis: sox genes and BMP signaling. Dev Biol. 2003;257(2):292–301.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of China (Grant No. 51502328, No. 81301537, No. 81300917) and the Opening Project of the Shanghai Key Laboratory of Orthopedic Implant (Grant No. KFKT2016003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kai Li or Xuebin Zheng.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, X., Li, K., Xie, Y. et al. Chemical stability and osteogenic activity of plasma-sprayed boron-modified calcium silicate-based coatings. J Mater Sci: Mater Med 27, 166 (2016). https://doi.org/10.1007/s10856-016-5781-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-016-5781-7

Keywords

Navigation