Advertisement

Constructing bio-layer of heparin and type IV collagen on titanium surface for improving its endothelialization and blood compatibility

  • Kun Zhang
  • Jun-ying Chen
  • Wei Qin
  • Jing-an Li
  • Fang-xia Guan
  • Nan Huang
Tissue Engineering Constructs and Cell Substrates Original Research
Part of the following topical collections:
  1. Tissue Engineering Constructs and Cell Substrates

Abstract

The modification of cardiovascular stent surface for a better micro-environment has gradually changed to multi-molecule, multi-functional designation. In this study, heparin (Hep) and type IV collagen (IVCol) were used as the functional molecule to construct a bifunctional micro-environment of anticoagulation and promoting endothelialization on titanium (Ti). The surface characterization results (AFM, Alcian Blue 8GX Staining and fluorescence staining of IVCol) indicated that the bio-layer of Hep and IVCol were successfully fabricated on the Ti surface through electrostatic self-assembly. The APTT and platelet adhesion test demonstrated that the bionic layer possessed better blood compatibility compared with Ti surface. The adhesion, proliferation, migration and apoptosis tests of endothelial cells proved that the Hep/IVCol layer was able to enhance the endothelialization of the Ti surface. The in vivo animal implantation results manifested that the bionic surface could encourage new endothelialization. This work provides an important reference for the construction of multifunction micro-environment on the cardiovascular scaffold surface.

Keywords

Activate Partial Thromboplastin Time Collagen Coating Blood Compatibility Platelet Adhesion Test Fluid Flow Shear Stress 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was financially supported by the Funds of Key Basic Research Program (2011CB606204), the Joint Fund for Fostering Talents of National Natural Science Foundation of China and Henan province (U1504310), China Postdoctoral Science Foundation (2014M562333, 2015M582206), and Postdoctoral Scientific Research Fund of Henan Province (2014020).

References

  1. 1.
    Armin Z, Sun Jan FG. Vitamin D, and cardiovascular disease. J Photochem Photobiol B. 2010;101:124–9.CrossRefGoogle Scholar
  2. 2.
    The Editors. A review of JACC journal articles on the topic of cardiac imaging: 2011–2012. J Am Coll Cardiol. 2013;62:e29–141.CrossRefGoogle Scholar
  3. 3.
    David SC, Clara KC, Eloi M, Nicholas MA, Kam SW. Cardiovascular disease in the developing world: prevalences, patterns, and the potential of early disease detection. J Am Coll Cardiol. 2012;60:1207–16.CrossRefGoogle Scholar
  4. 4.
    Sajjad R, Joseph FS, Stephen GE, Penny LH, Kerry CR, Aleck S, Bruce WL, Eugene HB. Survival prediction models for coronary intervention: strategic decision support. Ann Thorac Surg. 2014;97:522–8.CrossRefGoogle Scholar
  5. 5.
    Zhang K, Liu T, Li JA, Chen JY, WangJ Huang N. Surface modification of implanted cardiovascular metal stents: from anti-thrombosis, anti-restenosis to the endothelialization. J Biomed Mater Res Part A. 2014;102:588–609.CrossRefGoogle Scholar
  6. 6.
    Yang Z, Wang J, Luo R, Maitz MF, Jing F, Sun H, Huang N. The covalent immobilization of heparin to pulsed-plasma polymeric allylamine films on 316L stainless steel and the resulting effects on hemocompatibility. Biomaterials. 2010;31(8):2072–83.CrossRefGoogle Scholar
  7. 7.
    Weng YJ, Jing FJ, Chen JY, Huang N. Construction of heparinylated multilayer films on Ti-O via streptavidin/biotin interaction. Appl Surf Sci. 2012;258:5947–54.CrossRefGoogle Scholar
  8. 8.
    Enrico J, Oliver M, Siavosh M, Jandt E, Mutschke O, Mahboobi S, Uecker A, Platz R, Berndt A, Böhmer FD, Figulla HR, Werner GS. Stent-based release of a selective PDGF-receptor blocker from the bis-indolylmethanon class inhibits restenosis in the rabbit animal model. Vascul Pharmacol. 2010;52:55–62.CrossRefGoogle Scholar
  9. 9.
    Chen JY, Zhang X, Wan GJ, et al. Effect of hydrogen on the behavior of cultured human umbilical vein endothelial cells (HUVEC) on titanium oxide films fabricated by plasma immersion ion implantation and deposition. Surf Coat Technol. 2007;201:8140–5.CrossRefGoogle Scholar
  10. 10.
    George DD, Bimmer EC, Adriano C, et al. In-stent restenosis in the drug-eluting stent era. J Am Coll Cardiol. 2010;56:1897–907.CrossRefGoogle Scholar
  11. 11.
    Nehiro K, Yoshio K, Tatsuya N, et al. Late restenosis following sirolimus-eluting stent implantation. JACC Cardiovasc Interv. 2011;4(1):123–8.CrossRefGoogle Scholar
  12. 12.
    Marco LR, Dennis Z, Gabriele LG, Mango R, Belli G, Presbitero P. The first report of late stent thrombosis leading to acute myocardial infarction in patient receiving the new endothelial progenitor cell capture stent. Int J Cardiol. 2010;141:e20–2.CrossRefGoogle Scholar
  13. 13.
    Meng S, Liu ZJ, Shen L, Guo Z, Chou LSL, Zhong W, Du QG, Ge JB. The effect of a layer-by-layer chitosan–heparin coating on the endothelialization and coagulation properties of a coronary stent system. Biomaterials. 2009;30:2276–83.CrossRefGoogle Scholar
  14. 14.
    Zhang K, Li JA, Deng K, Liu T, Chen JY, Huang N. The endothelialization and hemocompatibility of type IV collagen and heparin multilayer on titanium. Colloids Surf B. 2013;108:295–304.CrossRefGoogle Scholar
  15. 15.
    Huang YY, Venkatraman SS, Boey FYC, Lahti EM, Umashankar PR, Mira M, Arumugam S, Khanolkar L, Vaishnav S. In vitro and in vivo performance of a dual drug-eluting stent (DDES). Biomaterials. 2010;31(15):4382–91.CrossRefGoogle Scholar
  16. 16.
    Richard OH. The extracellular matrix: not just pretty fibrils. Science. 2009;326:1216–9.CrossRefGoogle Scholar
  17. 17.
    Kim SH, Turnbull J, Guimond S. Extracellular matrix and cell signalling: the dynamic cooperation of integrin, proteoglycan and growth factor receptor. J Endocrinol. 2011;209:139–51.CrossRefGoogle Scholar
  18. 18.
    Michael JB, Richard WF. Collagens and atherosclerosis. Exp Gerontol. 1999;34(4):513–25.CrossRefGoogle Scholar
  19. 19.
    Emmanuelle M, Patrick V. Effects of surface properties and bioactivation of biomaterials on endothelial cells. Front Biosci. 2010;S2:239–55.CrossRefGoogle Scholar
  20. 20.
    Liu T, Liu Y, Chen Y, Liu SH, Maitz MF, Wang X, Zhang K, Wang J, Wang Y, Chen JY, Huang N. Immobilization of heparin/poly-l-lysine nanoparticles on dopamine-coated surface to create a heparin density gradient for selective direction of platelet and vascular cells behavior. Acta Biomater. 2014;2014(10):1940–4.CrossRefGoogle Scholar
  21. 21.
    Li GC, Yang P, Qin W, Maitz MF, Zhou S, Huang N. The effect of coimmobilizing heparin and fibronectin on titanium on hemocompatibility and endothelialization. Biomaterials. 2011;2011(32):4691–703.CrossRefGoogle Scholar
  22. 22.
    Huang N, Leng YX, Ding PD. 17—Surface engineered titanium alloys for biomedical devices. Surf Eng Light Alloys. 2010;568–602.Google Scholar
  23. 23.
    Li JA, Zhang K, Chen HQ, Liu T, Yang P, Zhao YC, Huang N. A novel coating of type IV collagen and hyaluronic acid on stent material-titanium for promoting smooth muscle cell contractile phenotype. Mater Sci Eng C. 2014;38:235–43.CrossRefGoogle Scholar
  24. 24.
    Li JA, Zhang K, Wu JJ, Liao YZ, Yang P, Huang N. Co-culture of endothelial cells and patterned smooth muscle cells on titanium: construction with high density of endothelial cells and low density of smooth muscle cells. Biochem Biophys Res Commun. 2015;456(2):555–61.CrossRefGoogle Scholar
  25. 25.
    Yang Y, Qi PK, Wen F, Li XY, Xia Q, Maitz MF, Yang ZL, Shen R, Tu QF, Huang N. Mussel-inspired one-step adherent coating rich in amine groups for covalent immobilization of heparin: hemocompatibility, growth behaviors of vascular cells, and tissue response. ACS Appl Mater Interfaces. 2014;6:14608–20.CrossRefGoogle Scholar
  26. 26.
    Li JA, Zhang K, Ma WY, Wu F, Yang P, He ZK, Huang N. Investigation of enhanced hemocompatibility and tissue compatibility associated with multi-functional coating based on hyaluronic acid and type IV collagen. Regener Biomater. 2016;. doi: 10.1093/rb/rbv030.Google Scholar
  27. 27.
    Wu F, Li JA, Zhang K, He ZK, Yang P, Zou D, Huang N. Multifunctional coating based on hyaluronic acid and dopamine conjugate for potential application on surface modification of cardiovascular implanted devices. ACS Appl Mater Interfaces. 2016;8:109–21.CrossRefGoogle Scholar
  28. 28.
    Li JA, Li GC, Zhang K, Liao YZ, Yang P, Maitz FM, Huang N. Co-culture of vascular endothelial cells and smooth muscle cells by hyaluronic acid micro-pattern on titanium surface. Appl Surf Sci. 2013;273:24–31.CrossRefGoogle Scholar
  29. 29.
    Li JA, Zhang K, Xu Y, Chen J, Yang P, Zhao YC, Zhao AS, Huang N. A novel co-culture models of human vascular endothelial cells and smooth muscle cells by hyaluronic acid micro-pattern on titanium surface. J Biomed Mater Res Part A. 2014;102A:1950–60.CrossRefGoogle Scholar
  30. 30.
    Zhang K, Li JA, Wang J, Liu T, Wang X, Chen JY, Huang N, Guan FX (2015). Combined REDV polypeptide and heparin onto titanium surface for the hemocompatibility and selectively endothelialization. J Cell Sci Therapy. 2015;6(1):1. doi:10.4172/2157-7013.1000198Google Scholar
  31. 31.
    Li JA, Zhang K, Wu F, He ZK, Yang P, Huang N. Constructing bio-functional layers of hyaluronan and type IV collagen on titanium surface for improving endothelialization. J Mater Sci. 2015;50:3226–36.Google Scholar
  32. 32.
    Li JA, Zhang K, Yang P, Wu LL, Chen JL, Zhao AS, Li GC, Huang N. Research of smooth muscle cells response to fluid flow shear stress by hyaluronic acid micro-pattern on a titanium surface. Exp Cell Res. 2013;319(17):2663–72.CrossRefGoogle Scholar
  33. 33.
    Xiang LJ, Li CH, Yang P, Li JA, Huang N. Fabrication of micro-patterned titanium dioxide nanotubes thin film and its biocompatibility. J Eng. 2014;. doi: 10.1049/joe.2014.0274.Google Scholar
  34. 34.
    Zhou Z, Chen J, Xiang LJ, Xu Y, Yang P, Li JA, Wu JJ, Huang N. Fabrication of 3D TiO2 micromesh on Silicon surface and its effects on platelet adhesion. Mater Lett. 2014;132:149–52.CrossRefGoogle Scholar
  35. 35.
    Yang Y, Qi PK, Ding YH, Maitz MF, Yang ZL, Tu QF, Xiong KQ, Leng Y, Huang N. A biocompatible and functional adhesive amine-rich coating based on dopamine polymerization. J Mater Chem B. 2015;3:72–81.CrossRefGoogle Scholar
  36. 36.
    Li GC, Yang P, Liao YZ, Huang N. Tailoring of the titanium surface by immobilization of heparin/fibronectin complexes for improving blood compatibility and endothelialization: an in vitro study. ACS Biomacromol. 2011;12:1155–68.CrossRefGoogle Scholar
  37. 37.
    Li JA, Zhang K, Wu JJ, Zhang LJ, Yang P, Tu QF, Huang N. Tailoring of the titanium surface by preparing cardiovascular endothelial extracellular matrix layer on the hyaluronic acid micro-pattern for improving biocompatibility. Colloids Surf B. 2015;128:201–10.CrossRefGoogle Scholar
  38. 38.
    Anwer H, Aloke VF. Endothelialization of drug eluting stents and its impact on dual anti-platelet therapy duration. Pharmacol Res. 2015;93:22–7.CrossRefGoogle Scholar
  39. 39.
    Sigrid ES, Julia R, Thomas H, Stephane M, Angela R, Heinrich S, George MW, Laufer G, Daniel Z. Low-molecular-weight heparin for anti-coagulation after left ventricular assist device implantation. J Heart Lung Transplantat. 2014;33(1):88–93.CrossRefGoogle Scholar
  40. 40.
    Sun XQ, Li D, Liu B, Zhang YH, Ma ZL. Preparation and anti-blood coagulation property of heparin/fluorocarbon composite film using radio frequency sputtering. Surf Coat Technol. 2007;201(9–11):5659–63.CrossRefGoogle Scholar
  41. 41.
    Li JA, Zhang K, Yang P, Qin W, Li GC, Zhao AS, Huang N. Human vascular endothelial cell morphology and functional cytokine secretion influenced by different size of HA micro-pattern on titanium substrate. Colloids Surf B. 2013;10:199–207.Google Scholar
  42. 42.
    Yang ZL, Yang Y, Xiong KQ, Li XY, Qi PK, Tu QF, Jing FJ, Weng YJ, Wang J, Huang N. Nitric oxide producing coating mimicking endothelium function for multifunctional vascular stents. Biomaterials. 2015;63:80–92.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Kun Zhang
    • 1
    • 2
    • 3
  • Jun-ying Chen
    • 3
  • Wei Qin
    • 4
  • Jing-an Li
    • 3
  • Fang-xia Guan
    • 1
    • 2
  • Nan Huang
    • 3
  1. 1.School of Life ScienceZhengzhou UniversityZhengzhouPeople’s Republic of China
  2. 2.Center of Stem Cell and Regenerative MedicineFirst Affiliated Hospital of Zhengzhou UniversityZhengzhouPeople’s Republic of China
  3. 3.Key Laboratory for Advanced Technologies of Materials, Ministry of Education, School of Material Science and EngineeringSouthwest Jiaotong UniversityChengduPeople’s Republic of China
  4. 4.Jiangsu Heze Allian Cells Bioscience Co., LtdChangzhouPeople’s Republic of China

Personalised recommendations