Mechanical and thermal behaviour of an acrylic bone cement modified with a triblock copolymer

  • E. Paz
  • J. Abenojar
  • Y. Ballesteros
  • F. Forriol
  • N. Dunne
  • J. C. del Real
Biomaterials Synthesis and Characterization Original Research
Part of the following topical collections:
  1. Biomaterials Synthesis and Characterization


The basic formulation of an acrylic bone cement has been modified by the addition of a block copolymer, Nanostrength® (NS), in order to augment the mechanical properties and particularly the fracture toughness of the bone cement. Two grades of NS at different levels of loading, between 1 and 10 wt.%, have been used. Mechanical tests were conducted to study the behaviour of the modified cements; specific tests measured the bend, compression and fracture toughness properties. The failure mode of the fracture test specimens was analysed using scanning electron microscopy (SEM). The effect of NS addition on the thermal properties was also determined, and the polymerisation reaction using differential scanning calorimetry. It was observed that the addition of NS produced an improvement in the fracture toughness and ductility of the cement, which could have a positive contribution by reducing the premature fracture of the cement mantle. The residual monomer content was reduced when the NS was added. However this also produced an increase in the maximum temperature and the heat delivered during the polymerisation of the cement.


Fracture Toughness PMMA Bone Cement Cement Mantle Residual Monomer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank Arkema Inc. for supplying the copolymers and to Fernando Pérez (Universidad Pontificia Comillas) for their collaboration.


  1. 1.
    Webb JCJ, Spencer RF. The role of polymethylmethacrylate bone cement in modern orthopaedic surgery. J Bone Joint Surg Br. 2007;89(7):851–7.CrossRefGoogle Scholar
  2. 2.
    Kashi A, Saha S. Mechanisms of failure of medical implants during long-term use. In: Sharma CP, editor. Biointegration of medical implant materials. Florida: Woodhead Publishing; 2010. p. 326–48.CrossRefGoogle Scholar
  3. 3.
    Graham J, Pruitt L, Ries M, Gundiah N. Fracture and fatigue properties of acrylic bone cement: The effects of mixing method, sterilization treatment, and molecular weight. J Arthroplast. 2000;15(8):1028–35.CrossRefGoogle Scholar
  4. 4.
    Dunne NJ, Orr FJ, Mushipe MT, Eveleigh RJ. The relationship between porosity and fatigue characteristics of bone cements. Biomaterials. 2003;24(2):239–45.CrossRefGoogle Scholar
  5. 5.
    Algers J, Maurer FHJ, Eldrup M, Wang SJ. Free volume and mechanical properties of Palacos® R bone cement. J Mater Sci Mater Med. 2003;14(11):955–60.CrossRefGoogle Scholar
  6. 6.
    Ishihara S, McEvily AJ, Goshima T, Kanekasu K, Nara T. On fatigue lifetimes and fatigue crack growth behavior of bone cement. J Mater Sci Mater Med. 2000;11(10):661–6.CrossRefGoogle Scholar
  7. 7.
    Ries MD, Young E, Al-Marashi L, Goldstein P, Hetherington A, Petrie T, Pruitt L. In vivo behavior of acrylic bone cement in total hip arthroplasty. Biomaterials. 2006;27(2):256–61.CrossRefGoogle Scholar
  8. 8.
    Weightman B, Freeman MA, Revell PA, Braden M, Albrektsson BE, Carlson LV. The mechanical properties of cement and loosening of the femoral component of hip replacements. J Bone Joint Surg Br. 1987;69(4):558–64.Google Scholar
  9. 9.
    Litsky AS, Rose RM, Rubin CT, Thrasher EL. A reduced-modulus acrylic bone cement: Preliminary results. J Orthop Res. 1990;8(4):623–6.CrossRefGoogle Scholar
  10. 10.
    Banse X, Sims TJ, Bailey AJ. Mechanical properties of adult vertebral cancellous bone: correlation with collagen intermolecular rross-Links. J Bone Miner Res. 2002;17(9):1621–8.CrossRefGoogle Scholar
  11. 11.
    Sun YC, Teng MMH, Yuan WS, Luo CB, Chang FC, Lirng JF, Guo WY, Chang CY. Risk of post-vertebroplasty fracture in adjacent vertebral bodies appears correlated with the morphologic extent of bone cement. J Chin Med Assoc. 2011;74(8):357–62.CrossRefGoogle Scholar
  12. 12.
    Lewis G. Properties of acrylic bone cement: state of the art review. J Biomed Mater Res. 1997;38(2):155–82.CrossRefGoogle Scholar
  13. 13.
    Dunne NJ, Orr JF. Curing characteristics of acrylic bone cement. J Mater Sci Mater Med. 2002;13(1):17–22.CrossRefGoogle Scholar
  14. 14.
    Stańczyk M, van Rietbergen B. Thermal analysis of bone cement polymerisation at the cement–bone interface. J Biomech. 2004;37(12):1803–10.CrossRefGoogle Scholar
  15. 15.
    Hailey JL, Turner IG, Miles AW. Fracture properties of fully cured acrylic bone cement. J Mater Sci Mater Med. 1995;6(11):635–8.CrossRefGoogle Scholar
  16. 16.
    Kotha SP, Li C, McGinn P, Schmid SR, Mason JJ. Improved mechanical properties of acrylic bone cement with short titanium fiber reinforcement. J Mater Sci Mater Med. 2006;17(8):743–8.CrossRefGoogle Scholar
  17. 17.
    Stipho HD. Effect of glass fiber reinforcement on some mechanical properties of autopolymerizing polymethyl methacrylate. J Prosthet Dent. 1998;79(5):580–4.CrossRefGoogle Scholar
  18. 18.
    Pourdeyhimi B, Wagner HD, Schwartz P. A comparison of mechanical properties of discontinuous Kevlar 29 fibre reinforced bone and dental cements. J Mater Sci. 1986;21(12):4468–74.CrossRefGoogle Scholar
  19. 19.
    Saha S, Pal S. Improvement of mechanical properties of acrylic bone cement by fiber reinforcement. J Biomech. 1984;17(7):467–78.CrossRefGoogle Scholar
  20. 20.
    Harper EJ, Braden M, Bonfield W. Mechanical properties of hydroxyapatite reinforced poly(ethylmethacrylate) bone cement after immersion in a physiological solution: influence of a silane coupling agent. J Mater Sci Mater Med. 2000;11(8):491–7.CrossRefGoogle Scholar
  21. 21.
    Ormsby R, McNally T, O’Hare P, Burke G, Mitchell C, Dunne N. Fatigue and biocompatibility properties of a poly(methyl methacrylate) bone cement with multi-walled carbon nanotubes. Acta Biomater. 2012;8(3):1201–12.CrossRefGoogle Scholar
  22. 22.
    Nien YH, Huang C. The mechanical study of acrylic bone cement reinforced with carbon nanotube. Mater Sci Eng B. 2010;169(1–3):134–7.CrossRefGoogle Scholar
  23. 23.
    Ormsby R, McNally T, Mitchell C, Dunne N. Incorporation of multiwalled carbon nanotubes to acrylic based bone cements: effects on mechanical and thermal properties. J Mech Behav Biomed Mater. 2010;3(2):136–45.CrossRefGoogle Scholar
  24. 24.
    Khaled SMZ, Charpentier PA, Rizkalla AS. Synthesis and characterization of poly(methyl methacrylate)-based experimental bone cements reinforced with TiO2–SrO nanotubes. Acta Biomater. 2010;6(8):3178–86.CrossRefGoogle Scholar
  25. 25.
    Slane J, Vivanco J, Ebenstein D, Squire M, Ploeg HL. Multiscale characterization of acrylic bone cement modified with functionalized mesoporous silica nanoparticles. J Mech Behav Biomed Mater. 2014;37:141–52.CrossRefGoogle Scholar
  26. 26.
    Khaled SMZ, Charpentier PA, Rizkalla AS. Physical and mechanical properties of PMMA bone cement reinforced with nano-sized titania fibers. J Biomater Appl. 2011;25(6):515–37.CrossRefGoogle Scholar
  27. 27.
    Gutiérrez-Mejía A, Herrera-Kao W, Duarte-Aranda S, Loría-Bastarrachea MI, Canché-Escamilla G, Moscoso-Sánchez FJ, Cauich-Rodríguez JV, Cervantes-Uc JM. Synthesis and characterization of core–shell nanoparticles and their influence on the mechanical behavior of acrylic bone cements. Mater Sci Eng C. 2013;33(3):1737–43.CrossRefGoogle Scholar
  28. 28.
    Rusu MC, Rusu DL, Rusu M, Ichim IC. Properties of acrylic bone cements modified with poly(butyl methacrylate). J Optoelectron Adv Mater. 2010;12(2):339–46.Google Scholar
  29. 29.
    Yang JM, Shyu JS, Chen HL. Additive modification of the polymerization and properties of an acrylic bone cement. Polym Eng Sci. 1998;38(3):530–3.CrossRefGoogle Scholar
  30. 30.
    May-Pat A, Herrera-Kao W, Cauich-Rodríguez JV, Cervantes-Uc JM, Flores-Gallardo SG. Comparative study on the mechanical and fracture properties of acrylic bone cements prepared with monomers containing amine groups. J Mech Behav Biomed Mater. 2012;6:95–105.CrossRefGoogle Scholar
  31. 31.
    Topoleski LDT, Ducheyne P, Cuckler JM. The fracture toughness of titanium-fiber-reinforced bone cement. J Biomed Mater Res. 1992;26(12):1599–617.CrossRefGoogle Scholar
  32. 32.
    Deb S, Vazquez B. The effect of cross-linking agents on acrylic bone cements containing radiopacifiers. Biomaterials. 2001;22(15):2177–81.CrossRefGoogle Scholar
  33. 33.
    Nien YH, Chen J. Studies of the mechanical and thermal properties of cross-linked poly(methylmethacrylate-acrylic acid-allylmethacrylate)-modified bone cement. J Appl Polym Sci. 2006;100(5):3727–32.CrossRefGoogle Scholar
  34. 34.
    Dean JM, Lipic PM, Grubbs RB, Cook RF, Bates FS. Micellar structure and mechanical properties of block copolymer-modified epoxies. J Polym Sci Part B. 2001;39(23):2996–3010.CrossRefGoogle Scholar
  35. 35.
    Hydro RM, Pearson RA. Epoxies toughened with triblock copolymers. J Polym Sci Part B. 2007;45(12):1470–81.CrossRefGoogle Scholar
  36. 36.
    Chen J, Taylor AC. Epoxy modified with triblock copolymers: morphology, mechanical properties and fracture mechanisms. J Mater Sci. 2012;47(11):4546–60.CrossRefGoogle Scholar
  37. 37.
    ISO 5833/2: Implants for surgery. Acrylic resin cements. International Organization for Standarization. 2002.Google Scholar
  38. 38.
    ASTM D 5045: Standard test methods for plane-strain fracture thoughness and strain energy release rate of plastic materials. American Society for Testings and Materials. 1999.Google Scholar
  39. 39.
    Maffezzoli A, Ronca D, Guida G, Pochini I, Nicolais L. In-situ polymerization behaviour of bone cements. J Mater Sci Mater Med. 1997;8(2):75–83.CrossRefGoogle Scholar
  40. 40.
    Vila MM, Ginebra MP, Gil FJ, Planell JA. Effect of porosity and environment on the mechanical behavior of acrylic bone cement modified with acrylonitrile-butadiene-styrene particles: i fracture toughness. J Biomed Mater Res. 1999;48(2):121–7.CrossRefGoogle Scholar
  41. 41.
    Muraikami A, Behiri JC, Bonfield W. Rubber-modified bone cement. J Mater Sci. 1988;23(6):2029–36.CrossRefGoogle Scholar
  42. 42.
    Maffezzoli A. Polymerization kinetics of acrylic bone cements by differential scanning calorimetry. J Therm Anal. 1996;47(1):35–49.CrossRefGoogle Scholar
  43. 43.
    High KA, Lee HB, Turner DT. Autoacceleration of free-radical polymerization. 4. Predissolved polymer. Macromolecules. 1979;12(2):332–7.CrossRefGoogle Scholar
  44. 44.
    Mahabadi HK, O’Driscoll KF. Concentration dependence of the termination rate constant during the initial stages of free radical polymerization. Macromolecules. 1977;10(1):55–8.CrossRefGoogle Scholar
  45. 45.
    Sack R, Schulz GV, Meyerhoff G. Free radical polymerization of methyl methacrylate up to the glassy state. Rates of propagation and termination. Macromolecules. 1988;21(12):3345–52.CrossRefGoogle Scholar
  46. 46.
    Stańczyk M. Study on modelling of PMMA bone cement polymerisation. J Biomech. 2005;38(7):1397–403.CrossRefGoogle Scholar
  47. 47.
    Ormsby RW, Modreanu M, Mitchell CA, Dunne NJ. Carboxyl functionalised MWCNT/polymethyl methacrylate bone cement for orthopaedic applications. J Biomater Appl. 2014;29(2):209–21.CrossRefGoogle Scholar
  48. 48.
    Franco-Marquès E, Méndez JA, Gironès J, Pèlach MA. Thermal and dynamic mechanical characterization of acrylic bone cements modified with biodegradable polymers. J Appl Polym Sci. 2013;128(5):3455–64.CrossRefGoogle Scholar
  49. 49.
    Yang JM, Shyu JS, Chen HL. Polymerization of acrylic bone cement investigated by differential scanning calorimetry: effects of heating rate and TCP content. Polym Eng Sci. 1997;37(7):1182–7.CrossRefGoogle Scholar
  50. 50.
    Borzacchiello A, Ambrosio L, Nicolais L, Harper EJ, Tanner KE, Bonfield W. Isothermal and non-isothermal polymerization of a new bone cement. J Mater Sci Mater Med. 1998;9(6):317–24.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • E. Paz
    • 1
  • J. Abenojar
    • 2
  • Y. Ballesteros
    • 1
  • F. Forriol
    • 3
  • N. Dunne
    • 4
    • 5
  • J. C. del Real
    • 1
  1. 1.Mechanical Engineering Department, Institute for Research in Technology (IIT)Universidad Pontificia ComillasMadridSpain
  2. 2.Materials Performance Group, Materials Science and Engineering DepartmentUniversidad Carlos III de MadridMadridSpain
  3. 3.School of MedicineUniversidad San Pablo CEUMadridSpain
  4. 4.School of Mechanical and Aerospace EngineeringThe Queen´s University of BelfastBelfastUK
  5. 5.School of Mechanical and Manufacturing EngineeringDublin City UniversityDublinRepublic of Ireland

Personalised recommendations