Skip to main content

Advertisement

Log in

Hydroxyapatite (HA)/poly-l-lactic acid (PLLA) dual coating on magnesium alloy under deformation for biomedical applications

  • Biomaterials Synthesis and Characterization
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The introduction of a protective coating layer to highly corrosive magnesium (Mg) has been proposed as one of the common approaches for improved corrosion resistance of Mg-based implants as load-bearing biomedical applications. However, only few studies have focused on the mechanical stability of the coated Mg under practical conditions where significant deformation of the load-bearing implants is induced during the surgical operation or under physiological environments. Therefore, in this study, we developed a dual coating system composed of an interlayer hydroxyapatite (HA) and a top layer poly-l-lactic acid (PLLA) to improve the coating stability under deformation of Mg alloy (WE43) substrate. The HA interlayer was directly formed on the Mg alloy surface, followed by dip-coating of PLLA. As the interlayer, HA improved the adhesion of PLLA by modulating nano- and microscale roughness, in addition to its inherently good bonding strength to Mg. The flexible and deformable top coating PLLA layer mitigated crack propagation in the HA layer under deformation. Thus, the dual coating layer provided good protection to the underlying WE43 from corrosion regardless of deformation. The enhanced corrosion behavior of dual-coated WE43 exhibited better mechanical and biological performance compared to the non-coated or single-coated WE43. Therefore, this dual coating layer on Mg is expected to accelerate Mg-based applications in biomedical devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chen YJ, Xu ZG, Smith C, Sankar J. Recent advances on the development of magnesium alloys for biodegradable implants. Acta Biomater. 2014;10(11):4561–73.

    Article  Google Scholar 

  2. Farraro KE, Kim KE, Woo SLY, Flowers JR, McCullough MB. Revolutionizing orthopaedic biomaterials: the potential of biodegradable and bioresorbable magnesium-based materials for functional tissue engineering. J Biomech. 2014;47(9):1979–86.

    Article  Google Scholar 

  3. Staiger MP, Pietak AM, Huadmai J, Dias G. Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials. 2006;27(9):1728–34.

    Article  Google Scholar 

  4. Gu X-N, Zheng Y-F. A review on magnesium alloys as biodegradable materials. Front Mater Sci China. 2010;4(2):111–5. doi:10.1007/s11706-010-0024-1.

    Article  Google Scholar 

  5. Persaud-Sharma D, McGoron A. Biodegradable magnesium alloys: a review of material development and applications. J Biomim Biomater Tissue Eng. 2012;12:25–39. doi:10.4028/www.scientific.net/JBBTE.12.25.

    Article  Google Scholar 

  6. Castellani C, Lindtner RA, Hausbrandt P, Tschegg E, Stanzl-Tschegg SE, Zanoni G, et al. Bone-implant interface strength and osseointegration: biodegradable magnesium alloy versus standard titanium control. Acta Biomater. 2011;7(1):432–40.

    Article  Google Scholar 

  7. Li N, Zheng YF. Novel magnesium alloys developed for biomedical application: a review. J Mater Sci Technol. 2013;29(6):489–502.

    Article  Google Scholar 

  8. Witte F. The history of biodegradable magnesium implants: a review. Acta Biomater. 2010;6(5):1680–92.

    Article  Google Scholar 

  9. Kim SM, Jo JH, Lee SM, Kang MH, Kim HE, Estrin Y, et al. Hydroxyapatite-coated magnesium implants with improved in vitro and in vivo biocorrosion, biocompatibility, and bone response. J Biomed Mater Res A. 2014;102(2):429–41.

    Article  Google Scholar 

  10. Witte F, Fischer J, Nellesen J, Crostack HA, Kaese V, Pisch A, et al. In vitro and in vivo corrosion measurements of magnesium alloys. Biomaterials. 2006;27(7):1013–8.

    Article  Google Scholar 

  11. Atrens A, Liu M, Zainal Abidin NI. Corrosion mechanism applicable to biodegradable magnesium implants. Mater Sci Eng, B. 2010;176(20):1609–36. doi:10.1016/j.mseb.2010.12.017.

    Article  Google Scholar 

  12. Witte F, Kaese V, Haferkamp H, Switzer E, Meyer-Lindenberg A, Wirth CJ, et al. In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials. 2005;26(17):3557–63.

    Article  Google Scholar 

  13. Hornberger H, Virtanen S, Boccaccini AR. Biomedical coatings on magnesium alloys—a review. Acta Biomater. 2012;8(7):2442–55.

    Article  Google Scholar 

  14. Degner J, Singer F, Cordero L, Boccaccini AR, Virtanen S. Electrochemical investigations of magnesium in DMEM with biodegradable polycaprolactone coating as corrosion barrier. Appl Surf Sci. 2013;282:264–70.

    Article  Google Scholar 

  15. Goodman SB, Yao ZY, Keeney M, Yang F. The future of biologic coatings for orthopaedic implants. Biomaterials. 2013;34(13):3174–83.

    Article  Google Scholar 

  16. Wong HM, Yeung KWK, Lam KO, Tam V, Chu PK, Luk KDK, et al. A biodegradable polymer-based coating to control the performance of magnesium alloy orthopaedic implants. Biomaterials. 2010;31(8):2084–96.

    Article  Google Scholar 

  17. Bidez MW, Misch CE. Clinical biomechanics in implant dentistry, chap. 5. In: Misch CE, editor. Dental implant prosthetics. 2nd ed. London: Elsevier; 2015. p. 95–106.

    Chapter  Google Scholar 

  18. Du J, Lee J-H, Jang AT, Gu A, Hossaini-Zadeh M, Prevost R, et al. Biomechanics and strain mapping in bone as related to immediately-loaded dental implants. J Biomech. 2015;48(12):3486–94. doi:10.1016/j.jbiomech.2015.05.014.

    Article  Google Scholar 

  19. Van Oosterwyck H, Duyck J, Vander Sloten J, Van der Perre G, De Cooman M, Lievens S, et al. The influence of bone mechanical properties and implant fixation upon bone loading around oral implants. Clin Oral Implan Res. 1998;9(6):407–18.

    Article  Google Scholar 

  20. Picard L, Phalip P, Fleury E, Ganachaud F. Bonding of silicone rubbers on metal (2) physical chemistry of adhesion. Prog Org Coat. 2015;87:258–66.

    Article  Google Scholar 

  21. Xu LP, Yamamoto A. Characteristics and cytocompatibility of biodegradable polymer film on magnesium by spin coating. Colloid Surface B. 2012;93:67–74.

    Article  Google Scholar 

  22. Collier JP, Surprenant VA, Mayor MB, Wrona M, Jensen RE, Surprenant HP. Loss of hydroxyapatite coating on retrieved total hip components. J Arthroplast. 1993;8:389–93.

    Article  Google Scholar 

  23. Soballe K. Hydroxyapatite ceramic coating for bone implant fixation—mechanical and histological studies in dogs. Acta Orthop Scand. 1993;64:1–58.

    Article  Google Scholar 

  24. Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006;27(15):2907–15. doi:10.1016/j.biomaterials.2006.01.017.

    Article  Google Scholar 

  25. Hiromoto S, Tomozawa M. Hydroxyapatite coating of AZ31 magnesium alloy by a solution treatment and its corrosion behavior in NaCl solution. Surf Coat Tech. 2011;205(19):4711–9.

    Article  Google Scholar 

  26. Dorozhkin SV. Calcium orthophosphate coatings on magnesium and its biodegradable alloys. Acta Biomater. 2014;10(7):2919–34.

    Article  Google Scholar 

  27. ISO. Implants for surgery. Part 2: Coatings of Hydroxyapatite: Technical Committee ISO/TC 150; 2008.

  28. Jo JH, Kang BG, Shin KS, Kim HE, Hahn BD, Park DS, et al. Hydroxyapatite coating on magnesium with MgF2 interlayer for enhanced corrosion resistance and biocompatibility. J Mater Sci-Mater M. 2011;22(11):2437–47.

    Article  Google Scholar 

  29. Tang H, Xin TZ, Wang FP. Calcium phosphate/titania sol–gel coatings on AZ31 magnesium alloy for biomedical applications. Int J Electrochem Sc. 2013;8(6):8115–25.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Industrial Strategic Technology Development Program (10045329, Development of customized implant with porous structure for bone replacement), funded by the Ministry of Trade, Industry & Energy (MI, Korea).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juha Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diez, M., Kang, MH., Kim, SM. et al. Hydroxyapatite (HA)/poly-l-lactic acid (PLLA) dual coating on magnesium alloy under deformation for biomedical applications. J Mater Sci: Mater Med 27, 34 (2016). https://doi.org/10.1007/s10856-015-5643-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-015-5643-8

Keywords

Navigation