Bacterial adhesion on biomedical surfaces covered by yttria stabilized zirconia

  • Ramón Pérez-Tanoira
  • David Horwat
  • Teemu J. Kinnari
  • Concepción Pérez-Jorge
  • Enrique Gómez-Barrena
  • Sylvie Migot
  • Jaime Esteban
Biomaterials Synthesis and Characterization Original Research
Part of the following topical collections:
  1. Biomaterials Synthesis and Characterization


The aim of this study was to compare the bacterial adhesion of Staphylococcus spp. on Ti–6Al–4V with respect to Ti–6Al–V modified alloys with a set of Cubic yttria stabilized zirconia (YSZ) and Ag-YSZ nanocomposite films. Silver is well known to have a natural biocidal character and its presence in the surface predicted to enhance the antimicrobial properties of biomedical surfaces. Microbial adhesion tests were performed using collection strains and twelve clinical strains of Staphylococcus aureus and Staphylococcus epidermidis. The adherence study was performed using a previously published protocol by Kinnari et al. Both collection strains and clinical isolates have shown lower bacterial adhesion to materials modified with respect to the alloy Ti–6Al–4V and the modification with silver reduced the bacterial adhesion for most of all the strains studied. Moreover the percentage of dead bacteria have been evaluated, demonstrating increased proportion of dead bacteria for the modified surfaces. Nanocrystalline silver dissolves releasing both Ag+ and Ag0 whereas other silver sources release only Ag+. We can conclude that YSZ with nanocrystalline silver coating may lead to diminished postoperative infections and to increased corrosion and scratch resistance of YSZ incorporating alloys Ti–6Al–4V.


Silver Nanoparticles Yttria Stabilize Zirconia Bacterial Adhesion Clinical Strain Prosthetic Joint Infection 



This study was realized thanks to a help of the Program CONSOLIDER-INGENIO 2010 FUNCOAT-CSD2008-00023 and by a Grant from the Spanish MINECO (MAT2013-48224-C2-2-R).


  1. 1.
    Andriole VT, Nagel DA, Southwick WO. A paradigm for human chronic osteomyelitis. J Bone Jt Surg Am. 1973;55(7):1511–5.Google Scholar
  2. 2.
    Rochford ET, Richards RG, Moriarty TF. Influence of material on the development of device-associated infections. Clin Microbiol Infect. 2012;18(12):1162–7.CrossRefGoogle Scholar
  3. 3.
    Guggenbichler JP, Assadian O, Boeswald M, Kramer A. Incidence and clinical implication of nosocomial infections associated with implantable biomaterials—catheters, ventilator-associated pneumonia, urinary tract infections. GMS Krankenhhyg Interdiszip. 2011;6(1):Doc18.Google Scholar
  4. 4.
    Katsikogianni M, Missirlis YF. Concise review of mechanisms of bacterial adhesion to biomaterials and of techniques used in estimating bacteria-material interactions. Eur Cell Mater. 2004;8:37–57.Google Scholar
  5. 5.
    Perez-Tanoira R, Perez-Jorge C, Endrino JL, Gomez-Barrena E, Horwat D, Pierson JF, et al. Bacterial adhesion on biomedical surfaces covered by micrometric silver Islands. J Biomed Mater Res A. 2012;100(6):1521–8.CrossRefGoogle Scholar
  6. 6.
    Perez-Tanoira R, Isea-Pena MC, Celdran A, Garcia-Vasquez C, Esteban J. Bacterial adherence to different meshes used in abdominal surgery. Surg Infect (Larchmt). 2014;15(2):90–3.CrossRefGoogle Scholar
  7. 7.
    Prieto-Perez L, Perez-Tanoira R, Petkova-Saiz E, Perez-Jorge C, Lopez-Rodriguez C, Alvarez-Alvarez B, et al. Osteomyelitis: a descriptive study. Clin Orthop Surg. 2014;6(1):20–5.CrossRefGoogle Scholar
  8. 8.
    Perez-Jorge C, Conde A, Arenas MA, Perez-Tanoira R, Matykina E, de Damborenea JJ, et al. In vitro assessment of Staphylococcus epidermidis and Staphylococcus aureus adhesion on TiO(2) nanotubes on Ti-6Al-4V alloy. J Biomed Mater Res A. 2012;100(7):1696–705.CrossRefGoogle Scholar
  9. 9.
    Adachi K, Tsurumoto T, Yonekura A, Nishimura S, Kajiyama S, Hirakata Y, et al. New quantitative image analysis of staphylococcal biofilms on the surfaces of nontranslucent metallic biomaterials. J Orthop Sci. 2007;12(2):178–84.CrossRefGoogle Scholar
  10. 10.
    Roy ME, Whiteside LA, Katerberg BJ, Steiger JA. Phase transformation, roughness, and microhardness of artificially aged yttria- and magnesia-stabilized zirconia femoral heads. J Biomed Mater Res A. 2007;83(4):1096–102.CrossRefGoogle Scholar
  11. 11.
    Piconi C, Burger W, Richter HG, Cittadini A, Maccauro G, Covacci V, et al. Y-TZP ceramics for artificial joint replacements. Biomaterials. 1998;19(16):1489–94.CrossRefGoogle Scholar
  12. 12.
    Ichikawa Y, Akagawa Y, Nikai H, Tsuru H. Tissue compatibility and stability of a new zirconia ceramic in vivo. J Prosthet Dent. 1992;68(2):322–6.CrossRefGoogle Scholar
  13. 13.
    Pierson JF. DH. Influence of the current applied to the silver target on the structure and the properties of Ag–Cu–O films deposited by reactive cosputtering. Appl Surf Sci. 2007;253(18):7522–6.CrossRefGoogle Scholar
  14. 14.
    Gries T, Catrin R, Migot S, Soldera F, Endrino JL, Landa-Canovas AR, et al. Local modification of the microstructure and electrical properties of multifunctional Au-YSZ nanocomposite thin films by laser interference patterning. ACS Appl Mater Interfaces. 2014;6(16):13707–15.CrossRefGoogle Scholar
  15. 15.
    Kinnari TJ, Soininen A, Esteban J, Zamora N, Alakoski E, Kouri VP, et al. Adhesion of staphylococcal and Caco-2 cells on diamond-like carbon polymer hybrid coating. J Biomed Mater Res A. 2008;86(3):760–8.CrossRefGoogle Scholar
  16. 16.
    Esteban J, Gomez-Barrena E, Cordero J, Martin-de-Hijas NZ, Kinnari TJ, Fernandez-Roblas R. Evaluation of quantitative analysis of cultures from sonicated retrieved orthopedic implants in diagnosis of orthopedic infection. J Clin Microbiol. 2008;46(2):488–92.CrossRefGoogle Scholar
  17. 17.
    Boulos L, Prevost M, Barbeau B, Coallier J, Desjardins R. LIVE/DEAD BacLight: application of a new rapid staining method for direct enumeration of viable and total bacteria in drinking water. J Microbiol Methods. 1999;37(1):77–86.CrossRefGoogle Scholar
  18. 18.
    Del Pozo JL, Rouse MS, Euba G, Kang CI, Mandrekar JN, Steckelberg JM, et al. The electricidal effect is active in an experimental model of Staphylococcus epidermidis chronic foreign body osteomyelitis. Antimicrob Agents Chemother. 2009;53(10):4064–8.CrossRefGoogle Scholar
  19. 19.
    Kinnari TJ, Esteban J, Martin-de-Hijas NZ, Sanchez-Munoz O, Sanchez-Salcedo S, Colilla M, et al. Influence of surface porosity and pH on bacterial adherence to hydroxyapatite and biphasic calcium phosphate bioceramics. J Med Microbiol. 2009;58(Pt 1):132–7.CrossRefGoogle Scholar
  20. 20.
    Gordon O, Vig Slenters T, Brunetto PS, Villaruz AE, Sturdevant DE, Otto M, et al. Silver coordination polymers for prevention of implant infection: thiol interaction, impact on respiratory chain enzymes, and hydroxyl radical induction. Antimicrob Agents Chemother. 2010;54(10):4208–18.CrossRefGoogle Scholar
  21. 21.
    Davenport K, Keeley FX. Evidence for the use of silver-alloy-coated urethral catheters. J Hosp Infect. 2005;60(4):298–303.CrossRefGoogle Scholar
  22. 22.
    Scarano A, Piattelli M, Caputi S, Favero GA, Piattelli A. Bacterial adhesion on commercially pure titanium and zirconium oxide disks: an in vivo human study. J Periodontol. 2004;75(2):292–6.CrossRefGoogle Scholar
  23. 23.
    Piconi C, Maccauro G. Zirconia as a ceramic biomaterial. Biomaterials. 1999;20(1):1–25.CrossRefGoogle Scholar
  24. 24.
    Lima EM, Koo H, Vacca Smith AM, Rosalen PL, Del Bel Cury AA. Adsorption of salivary and serum proteins, and bacterial adherence on titanium and zirconia ceramic surfaces. Clin Oral Implant Res. 2008;19(8):780–5.CrossRefGoogle Scholar
  25. 25.
    Rimondini L, Cerroni L, Carrassi A, Torricelli P. Bacterial colonization of zirconia ceramic surfaces: an in vitro and in vivo study. Int J Oral Maxillofac Implant. 2002;17(6):793–8.Google Scholar
  26. 26.
    Poortinga AT, Bos R, Busscher HJ. Charge transfer during staphylococcal adhesion to TiNOX coatings with different specific resistivity. Biophys Chem. 2001;91(3):273–9.CrossRefGoogle Scholar
  27. 27.
    Atiyeh BS, Costagliola M, Hayek SN, Dibo SA. Effect of silver on burn wound infection control and healing: review of the literature. Burns. 2007;33(2):139–48.CrossRefGoogle Scholar
  28. 28.
    Secinti KD, Ozalp H, Attar A, Sargon MF. Nanoparticle silver ion coatings inhibit biofilm formation on titanium implants. J Clin Neurosci. 2011;18(3):391–5.CrossRefGoogle Scholar
  29. 29.
    Drake PL, Hazelwood KJ. Exposure-related health effects of silver and silver compounds: a review. Ann Occup Hyg. 2005;49(7):575–85.CrossRefGoogle Scholar
  30. 30.
    Perez-Tanoira R, Garcia-Pedrazuela M, Hyyrynen T, Soininen A, Aarnisalo A, Nieminen MT, et al. Effect of S53P4 bone substitute on staphylococcal adhesion and biofilm formation on other implant materials in normal and hypoxic conditions. J Mater Sci Mater Med. 2015;26(9):239.CrossRefGoogle Scholar
  31. 31.
    Gosheger G, Hardes J, Ahrens H, Streitburger A, Buerger H, Erren M, et al. Silver-coated megaendoprostheses in a rabbit model—an analysis of the infection rate and toxicological side effects. Biomaterials. 2004;25(24):5547–56.CrossRefGoogle Scholar
  32. 32.
    Hussmann B, Johann I, Kauther MD, Landgraeber S, Jager M, Lendemans S. Measurement of the silver ion concentration in wound fluids after implantation of silver-coated megaprostheses: correlation with the clinical outcome. Biomed Res Int. 2013;2013:763096.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Ramón Pérez-Tanoira
    • 1
    • 2
  • David Horwat
    • 3
  • Teemu J. Kinnari
    • 2
  • Concepción Pérez-Jorge
    • 1
  • Enrique Gómez-Barrena
    • 4
  • Sylvie Migot
    • 5
  • Jaime Esteban
    • 1
  1. 1.Department of Clinical MicrobiologyIIS-Fundación Jiménez DíazMadridSpain
  2. 2.Otorhinolaryngology-Head and Neck SurgeryUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
  3. 3.Institut Jean Lamour, UMR7198, Université de LorraineNancyFrance
  4. 4.Department of Traumatology and OrthopaedicIIS-La PazMadridSpain
  5. 5.Centre de Compétences en Microscopies Electroniques et Microsondes (CC-MEM), Institut Jean LamourNancyFrance

Personalised recommendations