Skip to main content

Advertisement

Log in

Anti-Toxoplasma activity and impact evaluation of lyophilization, hot molding process, and gamma-irradiation techniques on CLH-PLGA intravitreal implants

  • Biomaterials Synthesis and Characterization
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Intraocular delivery systems have been developed to treat many eye diseases, especially those affecting the posterior segment of the eye. However, ocular toxoplasmosis, the leading cause of infectious posterior uveitis in the world, still lacks an effective treatment. Therefore, our group developed an intravitreal polymeric implant to release clindamycin, a potent anti-Toxoplasma antibiotic. In this work, we used different techniques such as differential scanning calorimetry, thermogravimetry, X-ray diffraction, scanning electron microscopy, and fourier-transform infrared spectroscopy to investigate drug/polymer properties while manufacturing the delivery system. We showed that the lyophilization, hot molding process, and sterilization by gamma irradiation did not change drug/polymer physical-chemistry properties. The drug was found to be homogeneously dispersed into the poly lactic-co-glycolic acid (PLGA) chains and the profile release was characterized by an initial burst followed by prolonged release. The drug profile release was not modified after gamma irradiation and non-covalent interaction was found between the drug and the PLGA. We also observed the preservation of the drug activity by showing the potent anti-Toxoplasma effect of the implant, after 24–72 h in contact with cells infected by the parasite, which highlights this system as an alternative to treat toxoplasmic retinochoroiditis.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Perkins ES. Ocular toxoplasmosis. Br J Ophthalmol. 1973;57(1):1–17.

    Article  Google Scholar 

  2. Rothova A, Suttorp-VanSchulten MS, Frits TW, Kijlstra A. Causes and frequency of blindness in patients with intraocular inflammatory disease. Br J Ophthalmol. 1996;80:332–6.

    Article  Google Scholar 

  3. Gaudana R, Ananthula HK, Parenky A, Mitra AK. Ocular drug delivery. AAPS J. 2010;12(3):348–60.

    Article  Google Scholar 

  4. Patel A, Cholkar K, Agrahari V, Mitra AK. Ocular drug delivery systems: an overview. World J Pharmacol. 2013;2(2):47–64.

    Article  Google Scholar 

  5. Rothova A, Meenken C, Buitenhuis HJ, Brinkman CJ, Baarsma GS, Boen-Tan TN, de Jong PT, Klaassen-Broekema N, Schweitzer CM, Timmerman Z. Therapy for ocular toxoplasmosis. Am J Ophthalmol. 1993;115:517–23.

    Article  Google Scholar 

  6. Schoenwald RD. Ocular drug delivery: pharmacokinetic considerations. Clin Pharmacokinet. 1990;18:255–69.

    Article  Google Scholar 

  7. Martinez CE, Zhang D, Conway MD, Peyman GA. Successful management of ocular toxoplasmosis during pregnancy using combined intraocular clindamycin and dexamethasone with systemic sulfadiazine. Int Ophthalmol. 1998;22:85–8.

    Article  Google Scholar 

  8. Kishore K, Conway MD, Peyman GA. Intravitreal clindamycin and dexamethasone for toxoplasmic retinochoroiditis. Ophthalmic Surg Lasers. 2001;32:183–92.

    Google Scholar 

  9. Sobrin L, Kump LI, Fosters CS. Intravitreal clindamycin for toxoplasmosis retinochoroiditis. Retina. 2007;27:952–7.

    Article  Google Scholar 

  10. Soheilian M, Ramezani A, Azimzadeh A, Sadoughi MM, Dehghan MH, Shahghdami R, Yaseri M, Peyman GA. Randomized trial of intravitreal clindamycin and dexamethasone versus pyrimethamine, sulfadiazine, and prednisolone in treatment of ocular toxoplasmosis. Ophthalmology. 2011;118:134–41.

    Article  Google Scholar 

  11. Fernandes-Cunha GM, Saliba JB, Siqueira RC, Jorge R, Silva-Cunha A. Determination of triamcinolone acetonide in silicone oil and aqueous humor of vitrectomized rabbits’eyes: application for a pharmacokinetic study with intravitreal triamcinolone acetonide injections (Kenalog®40). J Pharm Biomed Anal. 2014;89:24–7.

    Article  Google Scholar 

  12. Sampat KM, Garg SJ. Complications of intravitreal injections. Curr Opin Ophthalmol. 2010;21(3):178–83.

    Article  Google Scholar 

  13. Bochot A, Fattal E. Liposomes for intravitreal drug delivery: a state of the art. J Control Release. 2012;161:628–34.

    Article  Google Scholar 

  14. Lee SS, Hughes P, Ross AD, Robinson MR. Biodegradable implants for sustained drug release in the eye. Pharm Res. 2010;27:2043–53.

    Article  Google Scholar 

  15. Siqueira RC, dos Santos WF, Scott IU, Messias A, Rosa MN, Fernandes-Cunha GM, Silva-Cunha A, Jorge R (2014) Neuroprotective effects of intravitreal triamcinolone acetonide and dexamethasone implant in rabbit retinas after pars plana vitrectomy and silicone oil injection. Retina 1–7.

  16. Bernards DA, Bhisitkul RB, Wynn P, Steedman MR, Lee OT, Wong F, Thoongsuwan S, Desai TA. Ocular biocompatibility and structural integrity of micro and nanostructured poly(caprolactone) films. J Ocul Pharmacol Ther. 2013;29(2):249–57.

    Article  Google Scholar 

  17. Makadia HK, Siegel SJ. Poly Lactic-co-Glycolic Acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers. 2011;3:1377–97.

    Article  Google Scholar 

  18. Zhou T, Lewis H, Foster RE, Schwendeman SP. Development of a multiple-drug delivery implant for intraocular management of proliferative vitreoretinopathy. J Control Release. 1998;55:281–95.

    Article  Google Scholar 

  19. Garcia A, Tully J, Maynor B, Yerxa B. Precisely engineered biodegradable intraocular implants for the sustained release of dexamethasone. Investig Ophthalmol Vis Sci. 2013;54:1079.

    Google Scholar 

  20. Chennamaneni SR, Mamalis C, Archer B, Oakey Z, Ambati BK. Development of a novel bioerodible dexamethasone implant for uveitis and postoperative cataract inflammation. J Control Release. 2013;167(1):53–9.

    Article  Google Scholar 

  21. Fernandes-Cunha GM, Gouvea DM, Fulgencio GO, Rezende CMF, Silva GR, Bretas JM, Fialho SL, Lopes NP, Silva-Cunha A. Development of a method to quantify clindamycin in vitreous humor of rabbits’ eyes by UPLC-MS/MS: application to a comparative pharmacokinetic study and in vivo ocular biocompatibility evaluation. J Pharm Biomed Anal. 2015;102:346–52.

    Article  Google Scholar 

  22. Tamaddon L, Mostafavi A, Riazi-esfahani M, Karkhane R, Aghazadeh S, Rafiee-Tehrani M, Dorkoosh FA, Amoli FA. Development, characterizations and biocompatibility evaluations of intravitreal lipid implants. Jundishapur J Nat Pharm Prod. 2014;9(2):e16414.

    Article  Google Scholar 

  23. Tamaddon L, Mostafavi SA, Karkhane R, Riazi-Esfahani M, Dorkoosh FA, Rafiee-Tehrani M. Design and development of intraocular polymeric implant systems for long-term controlled-release of clindamycin phosphate for toxoplasmic retinochoroiditis. Adv Biomed Res. 2015;4(32):1–22.

    Google Scholar 

  24. Chemburkar SR, Bauer J, Deming K, Spiwek H, Patel K, Morris J, Henry R, Spanton S, Dziki W, Porter W, Quick J, Bauer P, Donaubauer J, Narayanan BA, Soldani M, Riley D, McFarland K. Dealing with the impact of ritonavir polymorphs on the late stages of bulk drug process development. Org Process Res Dev. 2000;4(5):413–7.

    Article  Google Scholar 

  25. Franks F. Frezee-drying: from empiricism to predictability. The significance of glass transitions. Dev Biol Stand. 1992;74:9–19.

    Google Scholar 

  26. Sintzel MB, Merkli A, Tabatabay C, Gurny R. Influence of irradiation sterilization on polymers used as drug carriers—a review. Drug Dev Ind Pharm. 1997;23(9):857–78.

    Article  Google Scholar 

  27. Bittner B, Mäder K, Kroll C, Borchert HH, Kissel T. Tetracycline-HCl-loaded poly(DL-lactide-co-glycolide) microspheres prepared by a spray drying technique: influence of γ-irradiation on radical formation and polymer degradation. J Control Release. 1999;59(1):23–32.

    Article  Google Scholar 

  28. Fialho SL, Silva-Cunha A. Manufacturing techniques of biodegradable implants intended to intraocular application. Drug Deliv. 2005;12:109–16.

    Article  Google Scholar 

  29. Chapiro A. Chemical modifications in irradiated polymers. Nucl Instrum Methods Phys Res B. 1988;32:111–4.

    Article  Google Scholar 

  30. Food and Drug Administration( 2000) FDA guidance for industry: analytical procedures and methods validation, U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research, Rockville.

  31. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65:55–63.

    Article  Google Scholar 

  32. Tanaka T, Omata Y, Saito A, Shimazaki K, Yamauchi K, Takase M, Kawase K, Igarashi K, Suzuki N. Toxoplasma gondii: parasiticidal effects of bovine lactoferricin against parasites. Exp Parasitol. 1995;81:614–7.

    Article  Google Scholar 

  33. Bharate SS, Bharate SB, Bajaj AN. Interactions and incompatibilities of pharmaceutical excipients with active pharmaceutical ingredients: a comprehensive review. J Excip Food Chem. 2010;1(3):3–26.

    Google Scholar 

  34. Vukomanović M, Zavašnik-Bergant T, Bračko I, Skapin SD, Ignjatović N, Radmilović V, Uskoković D. Poly(D,L-lactide-co-glycolide)/hydroxyapatite core-shell nanospheres. Part 3: properties of hydroxyapatite nano-rods and investigation of a distribution of the drug within the composite. Colloids Surf B Biointerfaces. 2011;87(2):226–35.

    Article  Google Scholar 

  35. Wegiel LA, Mauer LJ, Edgar KJ, Taylor LS. Crystallization of amorphous solid dispersions of resveratrol during preparation and storage—impact of different polymers. J Pharm Sci. 2013;102(1):171–84.

    Article  Google Scholar 

  36. Bonadies I, Ambrogi V, Ascione L, Carfagna CA. A hyperbranched polyester as antinucleating agent for Artemisinin in electrospun nanofibers. Eur Polymer J. 2014;60:145–52.

    Article  Google Scholar 

  37. Blasi P, Schoubben A, Giovagnoli S, Perioli L, Ricci M, Rossi C. Ketoprofen Poly(lactide-co-glycolide) Physical Interaction. AAPS Pharm Sci Tech. 2007;8(2):E1–8.

    Article  Google Scholar 

  38. Patel P, Patel P. Formulation and evaluation of clindamycin HCL in situgel for vaginal application. Int J Pharm Investig. 2015;5(1):50–6.

    Article  Google Scholar 

  39. Costa HS, Mansur AAP, Pereira MM, Mansur HS. Engineered hybrid scaffolds of poly(vinyl alcohol)/bioactive glass for potential bone engineering applications: synthesis, characterization, cytocompatibility, and degradation. J Nanomater. 2012;. doi:10.1155/2012/718470.

    Google Scholar 

  40. Jenquin MR, McGinity JW. Characterization of acrylic resin matrix films and mechanisms of drug-polymer interactions. Int J Pharm. 1994;101:23–34.

    Article  Google Scholar 

  41. Evaluation of Medicines for Human Use CHMP Assessment report Ozurdex International Nonproprietary Name: dexamethasone Procedure No: EMEA/H/C/001140.

  42. Çaliş S, Bozdağ S, Kaş HS, Tuncay M, Hincal AA. Influence of irradiation sterilization on poly(lactide-co-glycolide) microspheres containing anti-inflammatory drugs. II Farmaco. 2002;57(1):55–62.

    Article  Google Scholar 

  43. Wijsman JA, Dekaban GA, Rieder MJ. Differential toxicity of reactive metabolites of clindamycin and sulfonamides in HIV-infected cells: influence of HIV infection on clindamycin toxicity in vitro. J Clin Pharmacol. 2005;45(3):346–51.

    Article  Google Scholar 

  44. Fichera ME, Bhopale MK, Roos DS. In vitro assays elucidate peculiar kinetics of clindamycin action against Toxoplasma Gondii. Antimicrob Agents Chemother. 1995;39(7):1530–7.

    Article  Google Scholar 

  45. Blais J, Tardif C, Chamberland S. Effect of clindamycin on intracellular replication, protein synthesis, and infectivity of Toxoplasma gondii. Antimicrob Agents Chemother. 1993;37(12):2571–7.

    Article  Google Scholar 

  46. Pfefferkorn ER, Nothnagel RF, Borotz SE. Parasiticidal effect of clindamycin on Toxoplasma gondii grow in culture cells and selection of a drug-resistant mutante. Antimicrob Agents Chemother. 1992;36(5):1091–6.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support received from the following institutions: (Brazil), FAPEMIG (Minas Gerais—Brazil), Pró-reitoria de Pesquisa da Universidade Federal de Minas Gerais (Minas Gerais—Brazil), CAPES (Bolsistas da CAPES-Brasília/Brazil). Also to the Center of Microscopy at the Universidade Federal de Minas Gerais (http://www.microscopia.ufmg.br) for providing the equipment and technical support for experiments involving electron microscopy, the Foundation Ezequiel Dias for providing the equipment for thermal analysis, and to Professor Dr. Ricardo Alves for providing the equipment for FTIR analysis. The authors would especially like to thank to Raquel Maria Souza, Breno Barbosa Moreira, Rosálida Estevam Nazar Lopes, and Guilherme Augusto de Souza Tiago for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriella M. Fernandes-Cunha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernandes-Cunha, G.M., Rezende, C.M.F., Mussel, W.N. et al. Anti-Toxoplasma activity and impact evaluation of lyophilization, hot molding process, and gamma-irradiation techniques on CLH-PLGA intravitreal implants. J Mater Sci: Mater Med 27, 10 (2016). https://doi.org/10.1007/s10856-015-5621-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-015-5621-1

Keywords

Navigation