In vitro antimicrobial activity of ZnO based glass–ceramics against pathogenic bacteria

  • Madeeha RiazEmail author
  • Rehana Zia
  • Farhat Saleemi
  • Hafeez Ikram
  • Farooq Bashir
Clinical Applications of Biomaterials Original Research
Part of the following topical collections:
  1. Clinical Applications of Biomaterials


The antibacterial activity of ZnO (0–15.53 mol%) based SiO2–CaO–P2O5–Na2O–CaF2 bioactive glass–ceramics synthesized by controlled crystallisation were studied against eight micro-organisms using modified Kirby Bauer method. The antibacterial activity of the specimens was statistically evaluated using one-way analysis of variance and P < 0.05 was used as the level of significance. In vitro dissolution tests were performed in stimulated body fluid for 48 h at 37 °C for different time intervals to correlate the dissolution behaviour of test samples with antibacterial effects. The results illustrate that specimen BZn15.53 having the highest concentration of ZnO (15.53 mol %) demonstrated the strongest effect against Staph.aureus, S. epidermidis, B. subtilis and K. pneumonia. The effectiveness of BZn15.53 in inhibiting bacteria was due to accumulation of Zn+2 ions around the surface of the bacteria cell release that caused the death of the cell, besides the presence of hydroxyapatite phase was also responsible for damaging the cell membrane of bacteria.


Antibacterial Activity Bioactive Glass Wollastonite Zinc Oxide Roxithromycin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge the Post Graduate Medical Institute (PGMI) Lahore, Pakistan for providing pure bacterial cultures.


  1. 1.
    Lin H, Zhang J, Qu F, Jiang J, Jiang P. In vitro hydroxyapatite-forming ability and antimicrobial properties of mesoporous bioactive glasses doped with Ti/Ag. J Nanomater. 2013; Article ID 786420, 1–8.Google Scholar
  2. 2.
    Bellantone M, Williams HD, Hench LL. Broad-spectrum bactericidal activity of Ag2O-doped bioactive glass. Antimicrob Agents Chemother. 2002;46:1940–5.CrossRefGoogle Scholar
  3. 3.
    Gristina AG. Biomaterial-centered infection: microbial adhesion versus tissue integration. Science. 1987;237:1588–95.CrossRefGoogle Scholar
  4. 4.
    Balamurugan A, Balossier G, Laurent-Maquin D, Pina S, Rebelo AHS, Faure J, Ferreira JMF. An in vitro biological and anti-bacterial study on a sol–gel derived silver-incorporated bioglass system. Dent Mater. 2008;24:1343–51.CrossRefGoogle Scholar
  5. 5.
    Díaz M, Barba F, Miranda M, Guitián F, Torrecillas R, Moya JS. Synthesis and antimicrobial activity of a silver-hydroxyapatite nanocomposite. J Nano Mat. 2009;14:1–6.CrossRefGoogle Scholar
  6. 6.
    Ahmed AA, Ali AA, Mahmoud DAR, El-Fiqi AM. Preparation and characterization of antibacterial P2O5–CaO–Na2O–Ag2O glasses. J Biomed Mater Res Part A. 2011;98(1):132–42.CrossRefGoogle Scholar
  7. 7.
    Mustaffa R, Yusof MR, Othman F, Rahmat A. Drug release study of porous hydroxyapatite coated gentamycin- as drug delivery system. Regen Res. 2012;1(2):61–7.Google Scholar
  8. 8.
    Gorriti M, Lopez JMP, Boccaccini AR, Audisio C, Gorustovich AA. In vitro study of the antibacterial activity of bioactive glass-ceramic scaffolds. Adv Eng Mater. 2009;11(7):67–70.CrossRefGoogle Scholar
  9. 9.
    Zhang D, Munukka E, Hupa L, Ylänen H, Matti K. Factors controlling antibacterial properties of bioactive glasses. Key Eng Mater. 2007;330–332:173–6.CrossRefGoogle Scholar
  10. 10.
    Allan I, Newman H, Wilson M. Antibacterial activity of particulate Bioglass® against supra- and subgingival bacteria. Key Eng Mater. 2001;22:1683–7.Google Scholar
  11. 11.
    Shirashi F, Toyada K, Fukinbara S. Photolytic Smf pfotocatalytic treatment of an aqueous solution containing microbial cells and organic compounds in an annular-flow reactor. Chem Eng Sci. 1999;54:1547–52.CrossRefGoogle Scholar
  12. 12.
    Stefan R, Mihaela N, Spinu M, Popescu S. Antibacterial effect of ZnO-B2O3 Matrix Doped with Silver Ions on Gram Positive Bacteria Cultures. J Anim Sci Biotechnol. 2010;1:43.Google Scholar
  13. 13.
    Jafari A, Ghane M, Arastoo S. Synergistic antibacterial effects of nano zinc oxide combined with silver nanocrystales. Afr J Microbiol Res. 2011;5:5465–73.Google Scholar
  14. 14.
    Azam A, Ahmed AS, Oves M, Khan MS, Habib SS, Memic A. Antimicrobial activity of metal oxide nanoparticles against gram-positive and gram-negative bacteria: a comparative study. Int J Nanomed. 2012;7:6003–9.CrossRefGoogle Scholar
  15. 15.
    Hench LL, Wilson J. An introduction to bioceramics, advanced series in ceramics, vol. 1. Singapore: World Scientific Publishing; 1993.CrossRefGoogle Scholar
  16. 16.
    Kokubo T, Shigematsu M, Nagashima Y, Tashiro M, Nakamura T, Yamamuro T, Higashi S. Apatite- and wollastonite-containg glass-ceramics for prosthetic application. Bull Ins Chem Res. 1982;60(3–4):260–8.Google Scholar
  17. 17.
    Yoshimi T, Sugiyama N, Takeoka Y, Rikukawa M, Oribe K, Aizawa M. Changes of material properties of inorganic/organic hybrids fabricated by infiltration of poly(l-lactic acid) into open pores of porous hydroxyapatite ceramics in a simulated body fluid. J Aus Ceram Soc. 2011;47(1):18–22.Google Scholar
  18. 18.
    Kokubo T, Kitsugi T, Yamamuro T. Solution able to reproduce in vivo surface-structure changes in bioactive glass-ceramics A-W. J Biomed Mater Res. 1990;24:721–34.CrossRefGoogle Scholar
  19. 19.
    Hench LL. Bioceramics: from concept to clinic. J Am Ceram Soc. 1991;74:1487–510.CrossRefGoogle Scholar
  20. 20.
    Fujita H, Iida H, Ido K, Matsuda Y, Oka M, Nakamura T. Porous apatite-wollastonite glass-ceramic as an intramedullary plug. J Bone Joint Surg [Br]. 2000;82(4):614–8.CrossRefGoogle Scholar
  21. 21.
    Salman SM, Salama SN, Darwish H, Abo-Mosallam HA. In vitro bioactivity of glass-ceramics of the CaMgSi2O6-CaSiO3-Ca5(PO4)3F-Na2SiO3 system with TiO2 or ZnO additives. Ceram Int. 2009;35:1083–93.CrossRefGoogle Scholar
  22. 22.
    Kamitakahara M, Ohtsuki C, Inada H, Tanihara M, Miyazaki T. Effect of ZnO addition on bioactive CaO–SiO2–P2O5–CaF2 glass-ceramics containing apatite and wollastonite. Acta Biomater. 2006;2:467–71.CrossRefGoogle Scholar
  23. 23.
    Saino E, Grandi S, Quartarone E, Maliardi V, Galli D, Bloise N, Fassina L, Gabriella M, De Angelis C, Mustarelli P, Imbriani M, Visai L. In vitro calcified matrix deposition by human osteoblasts onto a zinc-containing bioactive glass. Eur Cell Mater. 2011;21:59–72.Google Scholar
  24. 24.
    Riaz M, Zia R, Saleemi F, Bashir F, Hossain T, Kayani Z. In vitro evaluation of bioactivity of SiO2–CaO–P2O5–Na2O–CaF2–ZnO glass-ceramics. Mat Sci Poland. 2014;32(3):364–74.Google Scholar
  25. 25.
    Hench LL. The story of bioglass. J Mat Sci. 2006;17(11):967–78.Google Scholar
  26. 26.
    Zia R, Riaz M, Maqsood S, Anjum S, Kayani Z, Hussain T. Titania doped bioactive ceramics prepared by solid state sintering method. Ceram Int. 2015;41:8964–72.CrossRefGoogle Scholar
  27. 27.
    Sawi J. Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay. J Microbiol Methods. 2003;54:177–82.CrossRefGoogle Scholar
  28. 28.
    Sevinç BA, Hanley L. Antibacterial activity of dental composites containing zinc oxide nanoparticles. J Biomed Mater Res Part B. 2010;94:22–31.Google Scholar
  29. 29.
    Kokubo T, Shigematsu M, Nagashisma Y, Tashiro M, Nakamura T, Yamamuro T, Higashi S. Apatite- and wallostonite-containing glass-ceramics for prosthetic application. Bull Inst Chem Res. 1982;60(3–4):260–8.Google Scholar
  30. 30.
    Jones N, Ray B, Ranjit KT, Manna AC. Antibacterial activity of ZnO nanoparticles suspensions on a broad spectrum of microorganisms. FEMS Microbiol Lett. 2008;279:71–6.CrossRefGoogle Scholar
  31. 31.
    Premanthan M, Karthikeyan K, Jeyasubramanian K, Manivannam G. Selective toxicity of ZnO nanoparticles towards Gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation. Nanomedicine. 2011;7:184–92.CrossRefGoogle Scholar
  32. 32.
    Bauer AW, Kirby WMH, Sherris JC, Trunk M. Antibioatic succeptability testing by a standardized single disc method. Am J Clin Pathol. 1966;45:493–6.Google Scholar
  33. 33.
    Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006;27(15):2907–15.CrossRefGoogle Scholar
  34. 34.
    Deepa C, Begum AN, Aravindan S. Preparation and antimicrobial observations of zinc doped nanohydroxyapatite. Nanosist FiZ Himmat. 2013;4(3):370–7.Google Scholar
  35. 35.
    Driscoll AJ, Bhat N, Karron RA, O’Brien KL, Murdoch DR. Disk diffusion bioassays for the detection of antibiotic activity in body fluids: applications for the pneumonia etiology research for child health project. Clin Infect Dis. 2012;54(S2):159–64.CrossRefGoogle Scholar
  36. 36.
    Stoor P, Soderling E, Salonen JI. Antibacterial effects of a bioactive glass paste on oral microorganisms. Acta Odontol Scand. 1998;56:161–5.CrossRefGoogle Scholar
  37. 37.
    Stoor P, Soderling E, Grenman R. Interations between bioactive glass S53P4 and the atrophic rhinitis-associated microoganism klebsiella ozaenae. J Biomed Mater Res B Appl Biomater. 1999;48:869–74.CrossRefGoogle Scholar
  38. 38.
    Zehnder M, Baumgartner G, Marquardt K, Paque F. Prevention of bacterial leakage through instrumented root canals by bioactive glass S53P4 and calcium hydroxide suspension in vitro. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2007;103:423–8.CrossRefGoogle Scholar
  39. 39.
    Jesline A, John NP, Narayanan PM, Vani C, Murugan S. Antimicrobial activity of zinc and titanium dioxide nanoparticles against biofilm-producing methicillin-resistant Staphylococcus aureus. Appl Nanosci. 2015;5:157–62.CrossRefGoogle Scholar
  40. 40.
    Nies DH. Microbial heavy-metal resistance. Appl Microbiol Biotechnol. 1999;51(6):730–50.CrossRefGoogle Scholar
  41. 41.
    Hu S, Chang J, Liu M, Ning C. Study on antibacterial effect of 45S5 Bioglass. J Mater Sci Mater Med. 2009;20(1):281–6.CrossRefGoogle Scholar
  42. 42.
    Adwan K, Abu-Hasan N. Gentamicin resistance in clinical strains of Enterobacteriaceae associated with reduced gentamicin uptake. Folia Microbiol. 1998;43:438–40.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Madeeha Riaz
    • 1
    Email author
  • Rehana Zia
    • 1
  • Farhat Saleemi
    • 2
  • Hafeez Ikram
    • 1
  • Farooq Bashir
    • 1
  1. 1.Department of PhysicsLahore College for Women UniversityLahorePakistan
  2. 2.Government College for Women UniversitySialkotPakistan

Personalised recommendations