Skip to main content

Advertisement

Log in

Effects of S53P4 bioactive glass on osteoblastic cell and biomaterial surface interaction

  • Biocompatibility Studies
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

To study the effect of bioactive glass bone substitute granules (S53P4) and hypoxic atmospheric conditions on human osteoblastic cell adhesion on different biomaterials. Cellular adhesion and cytoskeletal organization were studied on titanium, polytetrafluoroethylene, polydimethylsiloxane and S53P4 plates in the presence or absence of S53P4 granules. Cells used were human osteoblast-like SaOS-2 cells. The experiments were done either in normal atmospheric conditions or in hypoxia which simulates conditions prevailing in chronically infected bone or bone cavities. Vinculin-containing focal adhesions, organization of actin cytoskeleton and nuclear staining of cells on biomaterial surfaces were studied at 4.5 h, 2 and 4 days. In normoxic conditions S53P4 granules alkalinized the cell culture medium but cellular adhesion and cytoskeletal organization were usually not affected by their presence. Hypoxic conditions associated with lower pH and impaired cellular adhesion, vinculin-containing focal adhesion formation and rearrangement of the actin filaments to actin cytoskeleton. On most materials studied in hypoxic conditions, however, S53P4 granules prevented this impairment of cellular adhesion and cytoskeletal reorganization. The S53P4 granules promote the adhesion of SaOS-2 cells to various biomaterial surfaces especially in hypoxic conditions, in which S53P4 granules increase pH. The presence of S53P4 granules may protect biomaterial surface from bacterial colonization and promote osteointegration of implants used together with S53P4 granules for fixation and weight bearing.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Stoor P, Pulkkinen J, Grenman R. Bioactive glass S53P4 in the filling of cavities in the mastoid cell area in surgery for chronic otitis media. Ann Otol Rhinol Laryngol. 2010;119(6):377–82.

    Google Scholar 

  2. Yung M, Tassone P, Moumoulidis I, Vivekanandan S. Surgical management of troublesome mastoid cavities. J Laryngol Otol. 2011;125(3):221–6.

    Article  Google Scholar 

  3. Peltola M, Aitasalo K, Suonpaa J, Varpula M, Yli-Urpo A. Bioactive glass S53P4 in frontal sinus obliteration: a long-term clinical experience. Head Neck. 2006;28(9):834–41.

    Article  Google Scholar 

  4. Issing PR, Schonermark M, Kempf HG, Lenarz T. Indications for middle ear obliteration within the scope of cochlear implant management. Laryngorhinootologie. 1996;75(12):727–31.

    Article  Google Scholar 

  5. Leppäranta O, Vaahtio M, Peltola T, Zhang D, Hupa L, Hupa M, et al. Antibacterial effect of bioactive glasses on clinically important anaerobic bacteria in vitro. J Mater Sci Mater Med. 2008;19:547–51.

    Article  Google Scholar 

  6. Munukka E, Leppäranta O, Korkeamäki M, Vaahtio M, Peltola T, Zhang D, et al. Bactericidal effects of bioactive glasses on clinically important aerobic bacteria. J Mater Sci Mater Med. 2008;19:27–32.

    Article  Google Scholar 

  7. Jones JR. Review of bioactive glass: from Hench to hybrids. Acta Biomater. 2013;9(1):4457–86.

    Article  Google Scholar 

  8. Hench LLPH. Direct chemical bond of bioactive glass-ceramic materials to bone and muscle. J Biomed Mater Res. 1973;7(3):25–42.

    Article  Google Scholar 

  9. Passeri G, Cacchioli A, Ravanetti F, Galli C, Elezi E, Macaluso GM. Adhesion pattern and growth of primary human osteoblastic cells on five commercially available titanium surfaces. Clin Oral Implants Res. 2010;21(7):756–65.

    Article  Google Scholar 

  10. Okumura A, Goto M, Goto T, Yoshinari M, Masuko S, Katsuki T, et al. Substrate affects the initial attachment and subsequent behavior of human osteoblastic cells (Saos-2). Biomaterials. 2001;22(16):2263–71.

    Article  Google Scholar 

  11. Baxter LC, Frauchiger V, Textor M, Ap Gwynn I, Richards RG. Fibroblast and osteoblast adhesion and morphology on calcium phosphate surfaces. Eur Cell Mater. 2002;4:1–17.

    Google Scholar 

  12. Suominen E, Kinnunen J. Bioactive glass granules and plates in the reconstruction of defects of the facial bones. Scand J Plast Reconstr Surg Hand Surg. 1996;30(4):281–9.

    Article  Google Scholar 

  13. Wilson J, Clark AE, Hall M, Hench LL. Tissue response to bioglass endosseous ridge maintenance implants. J Oral Implantol. 1993;19(4):295–302.

    Google Scholar 

  14. Stoor P, Soderling E, Grenman R. Interactions between the bioactive glass S53P4 and the atrophic rhinitis-associated microorganism klebsiella ozaenae. J Biomed Mater Res. 1999;48(6):869–74.

    Article  Google Scholar 

  15. Cui X, Zhao C, Gu Y, Li L, Wang H, Huang W, et al. A novel injectable borate bioactive glass cement for local delivery of vancomycin to cure osteomyelitis and regenerate bone. J Mater Sci Mater Med. 2014;25(3):733–45.

    Article  Google Scholar 

  16. Felding Ju, Rasmussen JB, Lildholdt T. Gas composition of the normal and the ventilated middle ear cavity. Scand J Clin Lab Invest Suppl. 1987;186:31–41.

    Article  Google Scholar 

  17. Ostfeld EJ, Silberberg A. Transient pressure changes in the middle ear. Arch Otolaryngol Head Neck Surg. 1991;117(12):1390–4.

    Article  Google Scholar 

  18. Luntz M, Levi D, Sade J, Herman M. Relationship between the gas composition of the middle ear and the venous blood at steady state. Laryngoscope. 1995;105(5 Pt 1):510–2.

    Article  Google Scholar 

  19. Hergils L, Magnuson B. Human middle ear gas composition studied by mass spectrometry. Acta Otolaryngol. 1990;110(1–2):92–9.

    Article  Google Scholar 

  20. Spencer JA, Ferraro F, Roussakis E, Klein A, Wu J, Runnels JM, et al. Direct measurement of local oxygen concentration in the bone marrow of live animals. Nature. 2014;508(7495):269–73.

    Article  Google Scholar 

  21. Gristina AG. Biomaterial-centered infection: microbial adhesion versus tissue integration. Science. 1987;237(4822):1588–95.

    Article  Google Scholar 

  22. Stoor P, Soderling E, Grenman R. Bioactive glass S53P4 in repair of septal perforations and its interactions with the respiratory infection-associated microorganisms Haemophilus influenzae and Streptococcus pneumoniae. J Biomed Mater Res. 2001;58(1):113–20.

    Article  Google Scholar 

  23. Stoor P, Söderling E, Salonen J. Antibacterial effects of a bioactive glass paste on oral microorganisms. Acta Odontol Scand. 1998;56(3):161–5.

    Article  Google Scholar 

  24. Romano CL, Logoluso N, Meani E, Romano D, De Vecchi E, Vassena C, et al. A comparative study of the use of bioactive glass S53P4 and antibiotic-loaded calcium-based bone substitutes in the treatment of chronic osteomyelitis: a retrospective comparative study. Bone Joint J. 2014;96-B(6):845–50.

    Article  Google Scholar 

  25. Lehto VP, Virtanen I. Vinculin in cultured bovine lens-forming cells. Cell Differ. 1985;16(3):153–60.

    Article  Google Scholar 

  26. Soininen A, Kaivosoja E, Sillat T, Virtanen S, Konttinen YT, Tiainen VM. Osteogenic differentiation on DLC-PDMS-h surface. J Biomed Mater Res B Appl Biomater. 2014. doi:10.1002/jbm.b.33125.

    Google Scholar 

  27. Bacakova L, Filova E, Parizek M, Ruml T, Svorcik V. Modulation of cell adhesion, proliferation and differentiation on materials designed for body implants. Biotechnol Adv. 2011;29(6):739–67.

    Article  Google Scholar 

  28. Brunette DM, Chehroudi B. The effects of the surface topography of micromachined titanium substrata on cell behavior in vitro and in vivo. J Biomech Eng. 1999;121(1):49–57.

    Article  Google Scholar 

  29. Zaidel-Bar R, Geiger B. The switchable integrin adhesome. J Cell Sci. 2010;123(Pt 9):1385–8.

    Article  Google Scholar 

  30. Coraca-Huber DC, Fille M, Hausdorfer J, Putzer D, Nogler M. Efficacy of antibacterial bioactive glass S53P4 against S. aureus biofilms grown on titanium discs in vitro. J Orthop Res. 2014;32(1):175–7.

    Article  Google Scholar 

  31. Drago L, Romano D, De Vecchi E, Vassena C, Logoluso N, Mattina R, et al. Bioactive glass BAG-S53P4 for the adjunctive treatment of chronic osteomyelitis of the long bones: an in vitro and prospective clinical study. BMC Infect Dis. 2013;13:584.

    Article  Google Scholar 

  32. DeBerardinis RJ, Mancuso A, Daikhin E, Nissim I, Yudkoff M, Wehrli S, et al. Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci USA. 2007;104(49):19345–50.

    Article  Google Scholar 

Download references

Acknowledgments

This project was financially supported by the FinskaLäkaresällskapet, Sigrid Jusélius Foundation, and the special subsidiary funding of the Helsinki University Hospital.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Pérez-Tanoira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez-Tanoira, R., Kinnari, T.J., Hyyrynen, T. et al. Effects of S53P4 bioactive glass on osteoblastic cell and biomaterial surface interaction. J Mater Sci: Mater Med 26, 246 (2015). https://doi.org/10.1007/s10856-015-5568-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-015-5568-2

Keywords

Navigation