Skip to main content

Advertisement

Log in

Calcium phosphate crystallization on titania in a flowing Kokubo solution

  • Biomaterials Synthesis and Characterization
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Dry titania layers on air-oxidized titanium substrates have been found to be active enough to cause apatite to be deposited in Kokubo’s simulated body fluid (SBF) in narrow confined spaces, such as those in narrow grooves and thin gaps. Such in vitro apatite deposition is the basis of the GRAPE® technique. The aim of the present study is to determine why GRAPE conditions favor apatite deposition when laminar SBF flow (at 0.01–0.3 ml/min) passes through a shallow channel (0.5 mm) between a pair of titanium substrates each with a dry layer of titania. Assessing the factors that control the heterogeneous nucleation process led to the proposal of the working hypothesis that there are nucleation pre-embryos, ion assemblies that can be stabilized to form embryos, on the titania layer but that they are removed by the SBF flow. Specimens were subjected to different combinations of processes. One combination was that titania layers were exposed to still or flowing SBF, and the other was that half of a specimen, the inlet or outlet side, was exposed to still or flowing SBF with the other half being covered. The surface morphologies of the specimens were then compared in detail. The conclusion was that exposure to still SBF for 2 days before exposure to flowing SBF was required for apatite to be deposited. Some complicated apatite deposition modes were observed, e.g., apatite was deposited even on areas unexposed to still SBF. All of the results were successfully interpreted using the working hypothesis. The conclusion was that the GRAPE® technique depends on the confined space holding pre-embryo and embryo assemblies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hench LL, Day DE, Höland W, Rheinberger VM. Glass and medicine. Int J Appl Glass Sci. 2010;1(1):104–17.

    Article  Google Scholar 

  2. Hench LL. Bioceramics; from concept to clinic. J Am Ceram Soc. 1991;74:1487–510.

    Article  Google Scholar 

  3. Kokubo T. Design of bioactive bone substitutes based on biomineralization process. Mater Sci Eng C. 2005;25:97–104.

    Article  Google Scholar 

  4. Vogt JC, Brandes G, Krüger I, Behrens P, Nolte I, Lenarz T, Stieve M. A comparison of different nanostructured biomaterials in subcutaneous tissue. J Mater Sci Mater Med. 2008;19:2629–36.

    Article  Google Scholar 

  5. Hench L, editor. Introduction to ceramics. 2nd ed. London: Imperial College Pr.; 2013.

    Google Scholar 

  6. Brink M, Turunen T, Happonen Risto-Pekka, Yli-Urpo A. Compositional dependence of bioactivity of glasses in the system Na2O–K2O–MgO–CaO–B2O3–P2O5–SiO2. J Biomed Mater Res. 1997;37:114–21.

    Article  Google Scholar 

  7. Rahaman MN, Day DE, Bal BS, Fu Q, Jung SB, Bonewald LF, Tomsia AP. Bioactive glass in tissue engineering. Acta Biomater. 2011;7:2355–73.

    Article  Google Scholar 

  8. Sugino A, Tsuru K, Hayakawa S, Kikuta K, Kawachi G, Osaka A, Ohtsuki C. Induced deposition of bone-like hydroxyapatite on thermally oxidized titanium substrates using a spatial gap in a solution that mimics a body fluid. J Ceram Soc Japan. 2009;117:515–20.

    Article  Google Scholar 

  9. Sugino A, Ohtsuki C, Tsuru K, Hayakawa S, Nakano T, Okazaki Y, Osaka A. Effect of spatial design and thermal oxidation on apatite formation on Ti–15Zr–4Ta–4Nb alloy. Acta Biomater. 2009;5:298–304.

    Article  Google Scholar 

  10. Nakao Y, Sugino A, Tsuru K, Uetsuki K, Shirosaki Y, Hayakawa S, Osaka A. Enhancement of apatite-forming ability of parallel aligned Ti-substrates with optimum gaps by autoclaving. J Ceram Soc Japan. 2010;118:483–6.

    Article  Google Scholar 

  11. Uetsuki K, Nakai S, Shirosaki Y, Hayakawa S, Osaka A. Nucleation and growth of apatite on an anatase layer irradiated with UV light under different environmental conditions. J Biomed Mater Res Part A. 2013;101A:712–9.

    Article  Google Scholar 

  12. Sugino A, Uetsuki K, Kuramoto K, Hayakawa S, Shirosaki Y, Osaka A, Tsuru K, Nakano T, Ohtsuki C. GRAPE® technology or bone-like apatite deposition in narrow grooves. In: Narayan R, Colombo P, editors. Advances in bioceramics and porous ceramics III, ceramic engineering and science proceedings, vol. 31. Columbus: The American Ceramic Society; 2010. p. 57–62.

    Chapter  Google Scholar 

  13. Tsuru K, Hayakawa S, Osaka A, Sugino A, Doi K, Kuramoto K. Bone-compatible implant and method of producing the same, United States Patent US 8,257,445 B2, Sept. 4, 2012.

  14. Wang X-X, Yan W, Hayakawa S, Tsuru K, Osaka A. Apatite deposition on thermally and anodically oxidized titanium surfaces in a simulated body fluid. Biomaterials. 2003;24:4631–7.

    Article  Google Scholar 

  15. Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006;27:2907–15.

    Article  Google Scholar 

  16. Onuma K, Ito A. Cluster growth model for hydroxyapatite. Chem Mater. 1998;10:3346–51.

    Article  Google Scholar 

  17. Onuma K, Ito A, Tateishi T. Investigation of a growth unit of hydroxyapatite crystal from the measurements of step kinetics. J Crystal Growth. 1996;167:773–6.

    Article  Google Scholar 

  18. Nudelman F, Pieterse K, George A, Bomans PHH, Friedrich H, Brylka LJ, Hilbers PAJ, de With G, Sommerdijk NAJM. the role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors. Nat Mater. 2010;9:1004–9.

    Article  Google Scholar 

  19. Dey A, Bomans PHH, Müller FA, Will J, Frederik PM, de With G, Sommerdijk NAJM. the role of prenucleation clusters in surface-induced calcium phosphate crystallization. Nat Mater. 2010;9:1010–4.

    Article  Google Scholar 

  20. Betts F, Posner AS. An X-ray radial distribution study of amorphous calcium phosphate. Mater Res Bull. 1974;9:353–60.

    Article  Google Scholar 

  21. Posner AS, Betts F. Synthetic Amorphous Calcium Phosphate and Its Relation to Bone Mineral Structure. Acc Chem Res. 1975;8:273–81.

    Article  Google Scholar 

  22. Termine JD, Eanes ED. Calcium phosphate deposition from balanced salt solutions. Calc. Tiss. Res. 1974;15:81–4.

    Article  Google Scholar 

  23. Marques PAAP, Magalhaes MCF, Correia RN. Inorganic plasma with physiological CO2/HCO3 buffer. Biomaterials. 2003;24:1541–8.

    Article  Google Scholar 

  24. Oyane A, Onuma K, Ito A, Kim H-M, Kokubo T, Nakamura T. Formation and growth of clusters in conventional and new kinds of simulated body fluids. J Biomed Mater Res. 2003;64A:339–48.

    Article  Google Scholar 

  25. Oyane A, Kim H-M, Furuya T, Kokubo T, Miyazaki T, Nakamura T. Preparation and assessment of revised simulated body fluids. J Biomed Mater Res. 2003;65A:188–95.

    Article  Google Scholar 

  26. Müller L, Müller F. Preparation of SBF with different HCO3 content and its influence on the composition of biomimetic apatites. Acta Biomater. 2006;2:181–9.

    Article  Google Scholar 

  27. Olszta MJ, Cheng X, Jee SS, Kumar R, Kim Y-Y, Kaufman MJ, Douglas EP, Gower LB. Bone structure and formation: a new perspective. Mater Sci Eng R. 2007;58:77–116.

    Article  Google Scholar 

  28. Tas AC. The use of physiological solutions or media in calcium phosphate synthesis and processing. Acta Biomater. 2014;10:1771–92.

    Article  Google Scholar 

  29. Bohner M, Lemaitre J. Can bioactivity be tested in vitro with SBF solution? Biomaterials. 2009;30:2175–9.

    Article  Google Scholar 

  30. Pan H, Zhao X, Darvell BW, Lu WW. Apatite-formation ability—predictor of ‘‘bioactivity”? Acta Biomater. 2010;6:4181–8.

    Article  Google Scholar 

  31. Marieb EN, Hoehn K. The cardiovascular system: blood vessels; Human anatomy & physiology, 9th edn. Pearson Education, Inc., p. 712. ISBN 978-0-321-74326-8.

  32. Wang X-X, Hayakawa S, Tsuru K, Osaka A. A comparative study of in vitro apatite deposition on heat-, H2O2-, and NaOH-treated titanium surfaces. J Biomed Mater Res. 2001;54:172–8.

    Article  Google Scholar 

  33. Tsuru K, Kubo M, Hayakawa S, Ohtsuki C, Osaka A. Kinetics of apatite deposition of silica gel dependent on the inorganic ion composition of simulated body fluids. J Ceram Soc Japan. 2001;109:409–15.

    Article  Google Scholar 

  34. Kaneko S, Tsuru K, Hayakawa S, Takemoto S, Ohtsuki C, Ozaki T, Inoue H, Osaka A. In vivo evaluation of bone-bonding of titanium metal chemically treated with a hydrogen peroxide solution containing tantalum chloride. Biomaterials. 2011;22:875–81.

    Article  Google Scholar 

  35. Cölfen H. A crystal-clear view. Nat Mater. 2010;9:960–1.

    Article  Google Scholar 

  36. Zhu PX, Ishikawa M, Seo WS, Hozumi A, Yokogawa Y, Koumoto K. Nucleation and growth of hydroxyapatite on an amino organosilane overlayer. J Biomed Mater Res. 2002;59:294–304.

    Article  Google Scholar 

  37. Zhu P, Masuda Y, Koumoto K. The effect of surface charge on hydroxyapatite nucleation. Biomaterials. 2004;25:3915–21.

    Article  Google Scholar 

  38. Böhm HP. Acidic and basic properties of hydroxylated metal oxide surfaces. Discuss Faraday Soc. 1971;52:264–75.

    Article  Google Scholar 

  39. Li P-J, Ohtsuki C, Kokubo T, Nakanishi K, Soga N, de Groot K. The role of hydrated silica, titania, and alumina in inducing apatite on implants. J Biomed Mater Res. 1994;28:7–15.

    Article  Google Scholar 

  40. Uchida M, Kim H-M, Kokubo T, Fujibayashi S, Nakamura T. Structural dependence of apatite formation on titania gels in a simulated body fluid. J Biomed Mater Res. 2003;64A:164–70.

    Article  Google Scholar 

  41. Wang X-X, Hayakawa S, Tsuru K, Osaka A. Improvement of bioactivity of H2O2/TaCl5-treated titanium after subsequent heat treatments. J Biomed Mater Res. 2000;52:171–6.

    Article  Google Scholar 

  42. Hayakawa S, Masuda Y, Okamoto K, Shirosaki Y, Kato K, Osaka A. Liquid phase deposited titania coating to enable in vitro apatite formation on Ti6Al4 V alloy. J Mater Sci. 2014;25:375–81.

    Google Scholar 

  43. Maçon ALB, Kim TB, Valliant EM, Goetschius K, Brow RK, Day DE, Hoppe A, Boccaccini AR, Kim I-Y, Ohtsuki C, Kokubo T, Osaka A, Vallet-Regí M, Arcos D, Fraile L, Salinas AJ, Teixeira AV, Vueva Y, Almeida RM, Miola M, Vitale-Brovarone C, Verné E, Höland W, Jones JR. A unified in vitro evaluation for apatite-forming ability of bioactive glasses and their variants. J Mater Sci. 2015;26:115. doi:10.1007/s10856-015-5403-9.

    Google Scholar 

  44. Wu J-M, Hayakawa S, Tsuru K, Osaka A. Low-temperature preparation of anatase and rutile layers on titanium substrates and their ability to induce in vitro apatite deposition. J Am Ceram Soc. 2004;87:1635–42.

    Article  Google Scholar 

  45. Parks GA. The isoelectric points of solid oxides, solid hydroxides, and aqueous hydroxo complex systems. Chem Rev. 1965;65:177–98.

    Article  Google Scholar 

  46. Sugino A, Uetsuki K, Tsuru K, Hayakawa S, Osaka A. Surface topography designed to provide osteoconductivity to titanium after thermal oxidation. Mater Trans. 2008;49:428–34.

    Article  Google Scholar 

  47. Sugino A, Uetsuki K, Kuramoto K, Hayakawa S, Shirosaki Y, Osaka A, Tsuru K, Nakano T, Ohtsuki C. GRAPE® Technology or bone-like apatite deposition in narrow grooves. In: Narayan R, Colombo P, editors. Advanced in bioceramics and porous ceramics III, ceramic engineering and science proceedings, vol. 31. The American Ceramic Society, Columbus, USA; 2011. pp. 57–62 (the 35th International Conference and Exposition on Advanced Ceramics and Composites, Daytona Beach, Florida, USA, Jan. 24-29, 2010, Daytona Beach, FL, USA).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akiyoshi Osaka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayakawa, S., Tsuru, K., Uetsuki, K. et al. Calcium phosphate crystallization on titania in a flowing Kokubo solution. J Mater Sci: Mater Med 26, 222 (2015). https://doi.org/10.1007/s10856-015-5552-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-015-5552-x

Keywords

Navigation