Skip to main content

Advertisement

Log in

Fabrication of strongly attached hydroxyapatite coating on titanium by hydrothermal treatment of Ti–Zn–PO4 coated titanium in CaCl2 solution

  • Biomaterials Synthesis and Characterization
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Hydroxyapatite (HAp) coating was formed on zinc phosphate (Ti–Zn–PO4) coated Ti plates by hydrothermal treatment in CaCl2 solution at 200 °C for 12 h. Uniform surface coverage of the fabricated HAp coating was obtained by this method. SEM-EDX analysis of the adhesion test area showed that the presence of fractures only occurred in HAp crystals. On the other words cohesive fracture was seen in HAp coating layer formed on the Ti–Zn–PO4. The measured strength was around 42.3 ± 17 MPa. Rat bone marrow (RBM) mesenchymal stem cells were cultured and differentiation-induced on each sample (Ti plate, Ti–Zn–PO4 coated and HAp coated), and cell calcification properties were examined. Apparent differences in morphology and extension of the RBM cells were obtained, while the Ti–Zn–PO4 coated samples showed the highest cell number among all samples. After differentiation-induction, HAp coated samples showed the highest amount of alkaline phosphatase activity, and the highest level of cell calcification. Therefore, the hard tissue compatibility of Ti is improved by hydrothermally HAp coating of samples.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Schwarz F, Wieland M, Schwartz Z, Zhao G, Rupp F, Geis-Gerstorfer J, et al. Potential of chemically modified hydrophilic surface characteristics to support tissue integration of titanium dental implants. J Biomed Mater Res B Appl Biomater. 2009;88:544–57.

    Article  Google Scholar 

  2. Rigo ECS, Boschi AO, Yoshimoto M, Allegrini S, Konig B, Carbonari MJ. Evaluation in vitro and in vivo of biomimetic hydroxyapatite coated on titanium dental implants. Mater Sci Eng C. 2004;24:647–51.

    Article  Google Scholar 

  3. Massaro C, Rotolo P, De Riccardis F, Milella E, Napoli A, Wieland M, et al. Comparative investigation of the surface properties of commercial titanium dental implants. Part I: chemical composition. J Mater Sci Mater Med. 2002;13:535–48.

    Article  Google Scholar 

  4. Liu HY, Wang XJ, Wang LP, Lei FY, Wang XF, Ai HJ. Effect of fluoride-ion implantation on the biocompatibility of titanium for dental applications. Appl Surf Sci. 2008;245:6305–12.

    Article  Google Scholar 

  5. Korn D, Soyez G, Elssner G, Petzow G, Bres EF, d’Hoedt B, et al. Study of interface phenomena between bone and titanium and alumina surfaces in the case of monolithic and composite dental implants. J Mater Sci Mater Med. 1997;8:613–20.

    Article  Google Scholar 

  6. Jones JD, Lupori J, Van Sickels JE, Gardner W. A 5-year comparison of hydroxyapatite-coated titanium plasma-sprayed and titanium plasma-sprayed cylinder dental implants. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1999;87:649–52.

    Article  Google Scholar 

  7. Huang HH, Hsu CH, Pan SJ, He JL, Chen CC, Lee TL. Corrosion and cell adhesion behavior of TiN-coated and ion-nitrided titanium for dental applications. Appl Surf Sci. 2005;244:252–6.

    Article  Google Scholar 

  8. Elias CN, Oshida Y, Lima JHC, Muller CA. Relationship between surface properties (roughness, wettability and morphology) of titanium and dental implant removal torque. J Mech Behav Biomed Mater. 2008;1:234–42.

    Article  Google Scholar 

  9. Dohle J, Becker W, Braun M. Bone remodelling along a titanium hip arthroplasty stem after resection of a chondrosarcoma. Arch Orthop Trauma Surg. 2002;122:291–4.

    Article  Google Scholar 

  10. Effenberger H, Ramsauer T, Bohm G, Hilzensauer G, Dorn U, Lintner F. Successful hip arthroplasty using cementless titanium implants in rheumatoid arthritis. Arch Orthop Trauma Surg. 2002;122:80–7.

    Article  Google Scholar 

  11. Gillies RM, Kohan L, Cordingley R. Periprosthetic bone remodelling of a collum femoris preserving cementless titanium femoral hip replacement. Comput Methods Biomech Biomed Eng. 2007;10:97–102.

    Article  Google Scholar 

  12. Grubl A, Kolb A, Reinisch G, Fafilek G, Skrbensk G, Kotz R. Characterization, quantification, and isolation of aluminum oxide particles on grit blasted titanium aluminum alloy hip implants. J Biomed Mater Res Part B. 2007;83B:127–31.

    Article  Google Scholar 

  13. Lombardi AV, Berend KR, Mallory TH, Skeels MD, Adams JB. Survivorship of 2000 tapered titanium porous plasma-sprayed femoral components. Clin Orthop Relat Res. 2009;467:146–54.

    Article  Google Scholar 

  14. Molly L, Quirynen M, Michiels K, van Steenberghe D. Comparison between jaw bone augmentation by means of a stiff occlusive titanium membrane or an autologous hip graft: a retrospective clinical assessment. Clin Oral Implant Res. 2006;17:481–7.

    Article  Google Scholar 

  15. Ponsonnet L, Reybier K, Jaffrezic N, Comte V, Lagneau C, Lissac M, et al. Relationship between surface properties (roughness, wettability) of titanium and titanium alloys and cell behaviour. Mater Sci Eng C. 2003;23:551–60.

    Article  Google Scholar 

  16. Schuh A, Uter W, Kachler W, Goske J, Zeiler G, Lill C. Comparative surface examinations on corund blasted titanium implants and explants in total hip arthroplasty. Arch Orthop Trauma Surg. 2005;125:676–82.

    Article  Google Scholar 

  17. Ducheyne P, Willems G, Martens M, Helsen J. In vivo metal-ion release from porous titanium-fiber material. J Biomed Mater Res. 1984;18:293–308.

    Article  Google Scholar 

  18. Woodman JL, Jacobs JJ, Galante JO, Urban RM. Metal ion release from titanium-based prosthetic segmental replacements of long bones in baboons: a long-term study. J Orthop Res. 1984;1:421–30.

    Article  Google Scholar 

  19. Krischak GD, Gebhard F, Mohr W, Krivan V, Ignatius A, Beck A, et al. Difference in metallic wear distribution released from commercially pure titanium compared with stainless steel plates. Arch Orthop Trauma Surg. 2004;124:104–13.

    Article  Google Scholar 

  20. Ducheyne P, Healy KE. The effect of plasma-sprayed calcium phosphate ceramic coatings on the metal ion release from porous titanium and cobalt-chromium alloys. J Biomed Mater Res. 1988;22:1137–63.

    Article  Google Scholar 

  21. Ferrari F, Miotello A, Pavloski L, Galvanetto E, Moschini G, Galassini S, et al. Metal-ion release from titanium and tin-coated implants in rat bone. Nucl Instrum Methods Phys Res Sect B. 1993;79:421–3.

    Article  Google Scholar 

  22. de Groot K, Geesink R, Klein CP, Serekian P. Plasma sprayed coatings of hydroxylapatite. J Biomed Mater Res. 1987;21:1375–81.

    Article  Google Scholar 

  23. Kay JF, Golec TS, Riley RL. Hydroxyapatite-coated subperiosteal dental implants: design rationale and clinical experience. J Prosthet Dent. 1987;58:339–43.

    Article  Google Scholar 

  24. Block MS, Kent JN, Kay JF. Evaluation of hydroxylapatite-coated titanium dental implants in dogs. J Oral Maxillofac Surg. 1987;45:601–7.

    Article  Google Scholar 

  25. Cook SD, Kay JF, Thomas KA, Jarcho M. Interface mechanics and histology of titanium and hydroxylapatite-coated titanium for dental implant applications. Int J Oral Maxillofac Implants. 1987;2:15–22.

    Google Scholar 

  26. Golec TS, Krauser JT. Long-term retrospective studies on hydroxyapatite coated endosteal and subperiosteal implants. Dent Clin N Am. 1992;36:39–65.

    Google Scholar 

  27. Kent JN, Block MS, Finger IM, Guerra L, Larsen H, Misiek DJ. Biointegrated hydroxylapatite-coated dental implants: 5-year clinical observations. J Am Dent Assoc. 1990;121:138–44.

    Article  Google Scholar 

  28. Gottlander M, Albrektsson T. Histomorphometric studies of hydroxylapatite-coated and uncoated CP titanium threaded implants in bone. Int J Oral Maxillofac Implants. 1991;6:399–404.

    Google Scholar 

  29. Johnson BW. HA-coated dental implants: long-term consequences. J Calif Dent Assoc. 1992;20:33–41.

    Google Scholar 

  30. Koch B, Wolke JG, de Groot K. X-ray diffraction studies on plasma-sprayed calcium phosphate-coated implants. J Biomed Mater Res. 1990;24:655–67.

    Article  Google Scholar 

  31. Klein CP, Wolke JG, de Blieck-Hogervorst JM, de Groot K. Calcium phosphate plasma-sprayed coatings and their stability: an in vivo study. J Biomed Mater Res. 1994;28:909–17.

    Article  Google Scholar 

  32. Thomas LH, Leigh JA, Bland AP, Cook RS. Letters to the editor. J Biomed Mater Res. 1992;26:831–3.

    Article  Google Scholar 

  33. Sun L, Berndt CC, Gross KA, Kucuk A. Material fundamentals and clinical performance of plasma-sprayed hydroxyapatite coatings: a review. J Biomed Mater Res. 2001;58:570–92.

    Article  Google Scholar 

  34. Bloebaum RD, Bachus KN, Rubman MH, Dorr LD. Postmortem comparative-analysis of titanium and hydroxyapatite porous-coated femoral implants retrieved from the same patient: a case-study. J Arthroplast. 1993;8:203–11.

    Article  Google Scholar 

  35. Franchi M, Bacchelli B, Martini D, Pasquale VD, Orsini E, Ottani V, et al. Early detachment of titanium particles from various different surfaces of endosseous dental implants. Biomaterials. 2004;25:2239–46.

    Article  Google Scholar 

  36. Franchi M, Orsini E, Martini D, Ottani V, Fini M, Giavaresi G, et al. Destination of titanium particles detached from titanium plasma sprayed implants. Micron. 2007;38:618–25.

    Article  Google Scholar 

  37. Martini D, Fini M, Franchi M, Pasquale VD, Bacchelli B, Gamberini M, et al. Detachment of titanium and fluorohydroxyapatite particles in unloaded endosseous implants. Biomaterials. 2003;24:1309–16.

    Article  Google Scholar 

  38. Zhou ZF, Chalkova E, Lvov SN, Chou PH. Hydrothermal deposition of zirconia coatings on pre-oxidized BWR structural materials. J Nucl Mater. 2008;378:229–37.

    Article  Google Scholar 

  39. Valanezhad A, Tsuru K, Maruta M, Kawachi G, Matsuya S, Ishikawa K. A new biocompatible coating layer applied on titanium substrates using a modified zinc phosphatizing method. Surf Coat Technol. 2012;206:2207–12.

    Article  Google Scholar 

  40. Valanezhad A, Tsuru K, Maruta M, Kawachi G, Matsuya S, Ishikawa K. Zinc phosphate coating on 316L-type stainless steel using hydrothermal treatment. Surf Coat Technol. 2010;205:2538–41.

    Article  Google Scholar 

  41. Vrouwenvelder WC, Groot CG, de Groot K. Histological and biochemical evaluation of osteoblasts cultured on bioactive glass, hydroxylapatite, titanium alloy, and stainless steel. J Biomed Mater Res. 1993;27:465–75.

    Article  Google Scholar 

  42. Maniatopoulos C, Sodek J, Melcher AH. Bone formation in vitro by stromal cells obtained from bone marrow of young adult rats. Cell Tissue Res. 1988;254:317–30.

    Article  Google Scholar 

  43. Kuo MC, Yen SK. The process of electrochemical deposited hydroxyapatite coatings on biomedical titanium at room temperature. Mater Sci Eng C. 2002;20:153–60.

    Article  Google Scholar 

  44. Ducheyne P, Van Raemdonck W, Heughebaert JC, Heughebaert M. Structural analysis of hydroxyapatite coatings on titanium. Biomaterials. 1986;7:97–103.

    Article  Google Scholar 

  45. Ducheyne P, Van Raemdonck W, De Meester P. Physical and material properties of hydroxyapatite coatings sintered on titanium. In: Transactions of the Annual Meeting of the Society for Biomaterials in conjunction with the International Biomaterials Symposium. 1984. p. 350.

  46. Barrere F, van der Valk CM, Dalmeijer RA, van Blitterswijk CA, de Groot K, Layrolle P. In vitro and in vivo degradation of biomimetic octacalcium phosphate and carbonate apatite coatings on titanium implants. J Biomed Mater Res A. 2003;64:378–87.

    Article  Google Scholar 

  47. Ducheyne P. Titanium and calcium phosphate ceramic dental implants, surfaces, coatings and interfaces. J Oral Implantol. 1988;14:325–40.

    Google Scholar 

  48. Park JH, Lee YK, Kim KM, Kim KN. Bioactive calcium phosphate coating prepared on H2O2-treated titanium substrate by electrodeposition. Surf Coat Technol. 2005;195:252–7.

    Article  Google Scholar 

  49. Okamoto K, Matsuura T, Hosokawa R, Akagawa Y. RGD peptides regulate the specific adhesion scheme of osteoblasts to hydroxyapatite but not to titanium. J Dent Res. 1998;77:481–7.

    Article  Google Scholar 

  50. Takebe J, Itoh S, Okada J, Ishibashi K. Anodic oxidation and hydrothermal treatment of titanium results in a surface that causes increased attachment and altered cytoskeletal morphology of rat bone marrow stromal cells in vitro. J Biomed Mater Res. 2000;51:398–407.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Valanezhad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valanezhad, A., Tsuru, K. & Ishikawa, K. Fabrication of strongly attached hydroxyapatite coating on titanium by hydrothermal treatment of Ti–Zn–PO4 coated titanium in CaCl2 solution. J Mater Sci: Mater Med 26, 212 (2015). https://doi.org/10.1007/s10856-015-5548-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-015-5548-6

Keywords

Navigation