Carbon quantum dots: synthesis, characterization, and assessment of cytocompatibility

  • Zhengwei Zhang
  • Yu Duan
  • Yan Yu
  • Zhengyu Yan
  • Jianqiu Chen
Biomaterials Synthesis and Characterization Original Research
Part of the following topical collections:
  1. Biomaterials Synthesis and Characterization


A simple method for the synthesis of water-soluble carbon quantum dots (CQDs) has been developed by chemical oxidation treatment of the flour. The as-synthesized CQDs were monodispersed sphere particles with the approximate diameter of 5–8 nm, and exhibited strong fluorescence, excitation-dependent photoluminescence behavior and high photostability in a wide range of pH values. We investigated the cytotoxicity of as-prepared CQDs using rat mesangial cells (RMC). Compared with CdTe quantum dots, CQDs show no apparent cytotoxicity and much better biosafety property. The as-synthesized CQDs were also tested to label and image RMC in vitro and demonstrated to be highly promising biological fluorescent probes.


Tellurium Powder Potassium Periodate Monodispersed Sphere Particle Bright Blue Fluorescence Dulbecco Minimum Essential Medium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by The Research and Innovation Project for Graduate Students Academic Degree of Colleges and Universities of Jiangsu Province (KYZZ_0185) and The National Natural Science Foundation of China (NSFC 81274056).


  1. 1.
    Whitesides GM. Nanoscience, nanotechnology, and chemistry. Small. 2005;1:172–9.CrossRefGoogle Scholar
  2. 2.
    Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science. 2005;307:538–44.CrossRefGoogle Scholar
  3. 3.
    Li H, Kang Z, Liu Y, Lee ST. Carbon nanodots: synthesis, properties and applications. J Mater Chem. 2012;22:24230–53.CrossRefGoogle Scholar
  4. 4.
    Barreto JA, O’Malley W, Kubeil M, Graham B, Stephan H, Spiccia L. Nanomaterials: applications in cancer imaging and therapy. Adv Mater. 2011;23:H18–40.CrossRefGoogle Scholar
  5. 5.
    Derfus AM, Chan WCW, Bhatia SN. Probing the cytotoxicity of semiconductor quantum dots. Nano Lett. 2004;4:11–8.CrossRefGoogle Scholar
  6. 6.
    Lewinski N, Colvin V, Drezek R. Cytotoxicity of nanoparticles. Small. 2008;4:26–49.CrossRefGoogle Scholar
  7. 7.
    Hardman R. A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Perspect. 2006;114:165–72.CrossRefGoogle Scholar
  8. 8.
    Baker SN, Baker GA. Luminescent carbon nanodots: emergent nanolights. Angew Chem Int Ed Engl. 2010;49:6726–44.CrossRefGoogle Scholar
  9. 9.
    Yang ST, Cao L, Luo PG, Lu F, Wang X, Wang H, et al. Carbon dots for optical imaging in vivo. J Am Chem Soc. 2009;131:11308–9.CrossRefGoogle Scholar
  10. 10.
    Esteves da Silva JCG, Goncalves HMR. Analytical and bioanalytical applications of carbon dots. TrAC Trends Anal Chem. 2011;30:1327–36.CrossRefGoogle Scholar
  11. 11.
    Li Q, Ohulchanskyy TY, Liu RL, Koynov K, Wu DQ, Best A, et al. Photoluminescent carbon dots as biocompatible nanoprobes for targeting cancer cells in vitro. J Phys Chem C. 2010;114:12062–8.CrossRefGoogle Scholar
  12. 12.
    Xu XY, Ray R, Gu YL, Ploehn HJ, Gearheart L, Raker K, et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc. 2004;126:12736–7.CrossRefGoogle Scholar
  13. 13.
    Wang X, Cao L, Lu FS, Meziani MJ, Li H, Qi G, et al. Photoinduced electron transfers with carbon dots. Chem Commun. 2009;25:3774–6.CrossRefGoogle Scholar
  14. 14.
    Wang J, Wang CF, Chen S. Amphiphilic egg-derived carbon dots: rapid plasma fabrication, pyrolysis process, and multicolor printing patterns. Angew Chem Int Ed. 2012;51:9297–301.CrossRefGoogle Scholar
  15. 15.
    Zhao QL, Zhang ZL, Huang BH, Peng J, Zhang M, Pang DW. Facile preparation of low cytotoxicity fluorescent carbon nanocrystals by electrooxidation of graphite. Chem Commun. 2008;41:5116–8.CrossRefGoogle Scholar
  16. 16.
    Zheng LY, Chi YW, Dong YQ, Lin JP, Wang BB. Electrochemiluminescence of water-soluble carbon nanocrystals released electrochemically from graphite. J Am Chem Soc. 2009;131:4564–5.CrossRefGoogle Scholar
  17. 17.
    Krysmann MJ, Kelarakis A, Giannelis EP. Photoluminescent carbogenic nanoparticles directly derived from crude biomass. Green Chem. 2012;14:3141–5.CrossRefGoogle Scholar
  18. 18.
    Yang ZC, Wang M, Yong AM, Wong SY, Zhang XH, Tan H, et al. Intrinsically fluorescent carbon dots with tunable emission derived from hydrothermal treatment of glucose in the presence of monopotassium phosphate. Chem Commun. 2011;47:11615–7.CrossRefGoogle Scholar
  19. 19.
    Tian L, Ghosh D, Chen W, Pradhan S, Chang X, Chen S. Nanosized carbon particles from natural gas soot. Chem Mater. 2009;21:2803–9.CrossRefGoogle Scholar
  20. 20.
    Peng H, Travas-Sejdic J. Simple aqueous solution route to luminescent carbogenic dots from carbohydrates. Chem Mater. 2009;21:5563–5.CrossRefGoogle Scholar
  21. 21.
    Li H, He X, Liu Y, Huang H, Lian S, Lee ST, et al. One-step ultrasonic synthesis of water-soluble carbon nanoparticles with excellent photoluminescent properties. Carbon. 2011;49:605–9.CrossRefGoogle Scholar
  22. 22.
    Pandey S, Mewada A, Thakur M, Pillai S, Dharmattii R, Phadke C, et al. Synthesis of mesoporous silica oxide/C-dot complex (meso-SiO2/C-dots) using pyrolysed rice husk and its application in bioimaging. RSC Adv. 2014;4:1174–9.CrossRefGoogle Scholar
  23. 23.
    Das B, Dadhich P, Pal P, Srivas PK, Bankoti K, Dhara S. Carbon nanodots from date molasses: new nanolights for the in vitro scavenging of reactive oxygen species. J Mater Chem B. 2014;2:6839–47.CrossRefGoogle Scholar
  24. 24.
    Li MY, Ge YX, Chen QF, Xu SK, Wang NZ, Zhang XJ. Hydrothermal synthesis of highly luminescent CdTe quantum dots by adjusting precursors’ concentration and their conjunction with BSA as biological fluorescent probes. Talanta. 2007;72:89–94.CrossRefGoogle Scholar
  25. 25.
    Wang QL, Huang XX, Long YJ, Wang XL, Zhang HJ, Zhu R, et al. Hollow luminescent carbon dots for drug delivery. Carbon. 2013;59:192–9.CrossRefGoogle Scholar
  26. 26.
    Xu ZH, Yu JG, Liu G. Fabrication of carbon quantum dots and their application for efficient detecting Ru(bpy)32+ in the solution. Sens Actuators B. 2013;181:209–14.CrossRefGoogle Scholar
  27. 27.
    Chen XF, Zhan WX, Wang QJ, Fan JY. C8-structured carbon quantum dots: synthesis, blue and green double luminescence, and origins of surface defects. Carbon. 2014;79:165–73.CrossRefGoogle Scholar
  28. 28.
    Liang QH, Ma WJ, Shi Y, Li Z, Yang XM. Easy synthesis of highly fluorescent carbon quantum dots from gelatin and their luminescent properties and applications. Carbon. 2013;60:421–8.CrossRefGoogle Scholar
  29. 29.
    Grabolle M, Spieles M, Lesnyak V, Gaponik N, Eychmüller A, Resch-Genger U. Determination of the fluorescence quantum yield of quantum dots: suitable procedures and achievable uncertainties. Anal Chem. 2009;81:6285–94.CrossRefGoogle Scholar
  30. 30.
    Kumar P, Meena R, Paulraj R, Chanchal A, Verma AK, Bohidar HB. Fluorescence behavior of non-functionalized carbon nanoparticles and their in vitro applications in imaging and cytotoxic analysis of cancer cells. Colloid Surf B. 2012;91:34–40.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Analytical ChemistryChina Pharmaceutical UniversityNanjingChina
  2. 2.Engineering Center of State Ministry of Education for Standardization of Chinese Medicine ProcessingNanjing University of Chinese MedicineNanjingChina

Personalised recommendations