Advertisement

Human mesenchymal stem cell response to poly(ε-caprolactone/poly(methyl methacrylate) demixed thin films

  • Mohammed Khattak
  • Fanrong Pu
  • Judith M. Curran
  • John A. Hunt
  • Raechelle A. D’Sa
Special Issue: ESB 2014 Biocompatibility Studies
Part of the following topical collections:
  1. Special Issue: ESB 2014

Abstract

Advances in material sciences have enabled the fabrication of biomaterials which are able to provide the requisite cues to stimulate cells to behave in a specific way. Nanoscale surface topographies are well known to be able to positively influence cell–substrate interactions. This study reports on a novel series of poly(ε-caprolactone) PCL and poly(methyl methacrylate) demixed nanotopographic films as non-biological cell-stimulating cues. The topographic features observed ranged from nanoislands to nanopits. PMMA was observed to segregate to the air interface, while PCL preferred the substrate interface. Preliminary response of human mesenchymal stem cells to these surfaces indicated that the substrate with nanoisland topography has the potential to differentiate to osteogenic, chondrogenic and adipogenic lineages.

Keywords

Contact Angle PMMA Polymer Blend Human Mesenchymal Stem Cell Integrin Cluster 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors wish to thank Dr. Riaz Akhtar for the use of the AFM. This study was supported by the use of resources at the School of Engineering and the Institute of Aging and Chronic Disease.

References

  1. 1.
    Anselme K, Ploux L, Ponche A. Cell/material interfaces: influence of surface chemistry and surface topography on cell adhesion. J Adhes Sci Technol. 2010;24(5):831–52.CrossRefGoogle Scholar
  2. 2.
    Lord MS, Foss M, Besenbacher F. Influence of nanoscale surface topography on protein adsorption and cellular response. Nano Today. 2010;5(1):66–78.CrossRefGoogle Scholar
  3. 3.
    Curran JM, Chen R, Hunt JA. The guidance of human mesenchymal stem cell differentiation in vitro by controlled modifications to the cell substrate. Biomaterials. 2006;27(27):4783–93.CrossRefGoogle Scholar
  4. 4.
    D’Sa RA, Burke GA, Meenan BJ. Protein adhesion and cell response on atmospheric pressure dielectric barrier discharge-modified polymer surfaces. Acta Biomater. 2010;6(7):2609–20.CrossRefGoogle Scholar
  5. 5.
    Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284(5411):143–7.CrossRefGoogle Scholar
  6. 6.
    Giancotti FG, Ruoslahti E. Integrin signaling. Science. 1999;285(5430):1028–33.CrossRefGoogle Scholar
  7. 7.
    Boudreau N, Myers C, Bissell MJ. From laminin to lamin: regulation of tissue-specific gene expression by the ECM. Trends Cell Biol. 1995;5(1):1–4.CrossRefGoogle Scholar
  8. 8.
    Bruch M, Landwehr R, Engel J. Dissection of laminin by cathepsin G into its long-arm and short-arm structures and localization of regions involved in calcium dependent stabilization and self-association. Eur J Biochem. 1989;185(2):271–9.CrossRefGoogle Scholar
  9. 9.
    Engel J, Odermatt E, Engel A, Madri JA, Furthmayr H, Rohde H, et al. Shapes, domain organizations and flexibility of laminin and fibronectin, two multifunctional proteins of the extracellular matrix. J Mol Biol. 1981;150(1):97–120.CrossRefGoogle Scholar
  10. 10.
    Li S, Edgar D, Fässler R, Wadsworth W, Yurchenco PD. The role of laminin in embryonic cell polarization and tissue organization. Dev Cell. 2003;4(5):613–24.CrossRefGoogle Scholar
  11. 11.
    Weir ML, Oppizzi ML, Henry MD, Onishi A, Campbell KP, Bissell MJ, et al. Dystroglycan loss disrupts polarity and β-casein induction in mammary epithelial cells by perturbing laminin anchoring. J Cell Sci. 2006;119(19):4047–58.CrossRefGoogle Scholar
  12. 12.
    Streuli CH, Schmidhauser C, Bailey N, Yurchenco P, Skubitz A, Roskelley C, et al. Laminin mediates tissue-specific gene expression in mammary epithelia. J Cell Biol. 1995;129(3):591–603.CrossRefGoogle Scholar
  13. 13.
    Beck K, Hunter I, Engel J. Structure and function of laminin: anatomy of a multidomain glycoprotein. FASEB J. 1990;4(2):148–60.Google Scholar
  14. 14.
    Buttiglieri S, Pasqui D, Migliori M, Johnstone H, Affrossman S, Sereni L, et al. Endothelization and adherence of leucocytes to nanostructured surfaces. Biomaterials. 2003;24(16):2731–8.CrossRefGoogle Scholar
  15. 15.
    Dalby M, Childs S, Riehle M, Johnstone H, Affrossman S, Curtis A. Fibroblast reaction to island topography: changes in cytoskeleton and morphology with time. Biomaterials. 2003;24(6):927–35.CrossRefGoogle Scholar
  16. 16.
    Dalby MJ, Gadegaard N, Tare R, Andar A, Riehle MO, Herzyk P, et al. The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nat Mater. 2007;6(12):997–1003.CrossRefGoogle Scholar
  17. 17.
    McMurray RJ, Gadegaard N, Tsimbouri PM, Burgess KV, McNamara LE, Tare R, et al. Nanoscale surfaces for the long-term maintenance of mesenchymal stem cell phenotype and multipotency. Nat Mater. 2011;10(8):637–44.CrossRefGoogle Scholar
  18. 18.
    Dalby M, Riehle M, Johnstone H, Affrossman S, Curtis A. In vitro reaction of endothelial cells to polymer demixed nanotopography. Biomaterials. 2002;23(14):2945–54.CrossRefGoogle Scholar
  19. 19.
    Affrossman S, Henn G, O’Neill SA, Pethrick RA, Stamm M. Surface topography and composition of deuterated polystyrene-poly(bromostyrene) blends. Macromolecules. 1996;29(14):5010–6.CrossRefGoogle Scholar
  20. 20.
    Ton-That C, Shard A, Bradley R. Surface feature size of spin cast PS/PMMA blends. Polymer. 2002;43(18):4973–7.CrossRefGoogle Scholar
  21. 21.
    Ton-That C, Shard A, Teare D, Bradley R. XPS and AFM surface studies of solvent-cast PS/PMMA blends. Polymer. 2001;42(3):1121–9.CrossRefGoogle Scholar
  22. 22.
    Broz ME, VanderHart DL, Washburn NR. Structure and mechanical properties of poly(d, l-lactic acid)/poly(ε-caprolactone) blends. Biomaterials. 2003;24(23):4181–90.CrossRefGoogle Scholar
  23. 23.
    Lim JY, Hansen JC, Siedlecki CA, Runt J, Donahue HJ. Human foetal osteoblastic cell response to polymer-demixed nanotopographic interfaces. J R Soc Interface. 2005;2(2):97–108.CrossRefGoogle Scholar
  24. 24.
    Berry CC, Dalby MJ, McCloy D, Affrossman S. The fibroblast response to tubes exhibiting internal nanotopography. Biomaterials. 2005;26(24):4985–92.CrossRefGoogle Scholar
  25. 25.
    Dalby M, Giannaras D, Riehle M, Gadegaard N, Affrossman S, Curtis A. Rapid fibroblast adhesion to 27 nm high polymer demixed nano-topography. Biomaterials. 2004;25(1):77–83.CrossRefGoogle Scholar
  26. 26.
    Dalby MJ, Riehle MO, Johnstone H, Affrossman S, Curtis ASG. In vitro reaction of endothelial cells to polymer demixed nanotopography. Biomaterials. 2002;23(14):2945–54.CrossRefGoogle Scholar
  27. 27.
    Affrossman S, Stamm M. The effect of molecular weight on the topography of thin films of blends of poly (4-bromostyrene) and polystyrene. Colloid Polym Sci. 2000;278(9):888–93.CrossRefGoogle Scholar
  28. 28.
    Ton-That C, Shard AG, Bradley RH. Surface feature size of spin cast PS/PMMA blends. Polymer. 2002;43(18):4973–7.CrossRefGoogle Scholar
  29. 29.
    Tanaka K, Takahara A, Kajiyama T. Surface molecular aggregation structure and surface molecular motions of high-molecular-weight polystyrene/low-molecular-weight poly(methyl methacrylate) blend films. Macromolecules. 1998;31(3):863–9.CrossRefGoogle Scholar
  30. 30.
    Raczkowska J, Bernasik A, Budkowski A, Sajewicz K, Penc B, Lekki J, et al. Structures formed in spin-cast films of polystyrene blends with poly(butyl methacrylate) isomers. Macromolecules. 2004;37(19):7308–15.CrossRefGoogle Scholar
  31. 31.
    Tanaka K, Yoon J-S, Takahara A, Kajiyama T. Ultrathinning-induced surface phase separation of polystyrene/poly(vinyl methyl ether) blend film. Macromolecules. 1995;28(4):934–8.CrossRefGoogle Scholar
  32. 32.
    Biggs MJP, Richards RG, Dalby MJ. Nanotopographical modification: a regulator of cellular function through focal adhesions. Nanomed Nanotechnol Biol Med. 2010;6(5):619–33.CrossRefGoogle Scholar
  33. 33.
    Dalby MJ, Gadegaard N, Tare R, Andar A, Riehle MO, Herzyk P, et al. The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nat Mater. 2007;6(12):997–1003.CrossRefGoogle Scholar
  34. 34.
    Biggs MJP, Richards RG, Gadegaard N, Wilkinson CDW, Dalby MJ. The effects of nanoscale pits on primary human osteoblast adhesion formation and cellular spreading. J Mater Sci Mater Med. 2007;18(2):399–404.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Mohammed Khattak
    • 1
  • Fanrong Pu
    • 2
  • Judith M. Curran
    • 1
  • John A. Hunt
    • 2
  • Raechelle A. D’Sa
    • 1
  1. 1.Centre for Materials and StructuresUniversity of LiverpoolLiverpoolUK
  2. 2.Department of Clinical EngineeringUK Centre for Tissue EngineeringLiverpoolUK

Personalised recommendations