Fabrication of gelatin–strontium substituted calcium phosphate scaffolds with unidirectional pores for bone tissue engineering

  • Yu-Chun Wu
  • Wei-Yu Lin
  • Chyun-Yu Yang
  • Tzer-Min Lee
Biomaterials Synthesis and Characterization
Part of the following topical collections:
  1. Biomaterials Synthesis and Characterization


This study fabricated homogeneous gelatin–strontium substituted calcium phosphate composites via coprecipitation in a gelatin solution. Unidirectional porous scaffolds with an oriented microtubular structure were then manufactured using freeze–drying technology. The resulting structure and pore alignment were determined using scanning electron microscopy. The pore size were in the range of 200–400 μm, which is considered ideal for the engineering of bone tissue. The scaffolds were further characterized using energy dispersive spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction. Hydroxyapatite was the main calcium phosphate compound in the scaffolds, with strontium incorporated into the crystal structure. The porosity of the scaffolds decreased with increasing concentration of calcium-phosphate. The compressive strength in the longitudinal direction was two to threefold higher than that observed in the transverse direction. Our results demonstrate that the composite scaffolds degraded by approximately 20 % after 5 weeks. Additionally, in vitro results reveal that the addition of strontium significantly increased human osteoblastic cells proliferation. Scaffolds containing strontium with a Sr-CaP/(gelatin + Sr-CaP) ratio of 50 % provided the most suitable environment for cell proliferation, particularly under dynamic culture conditions. This study demonstrates the considerable potential of composite scaffolds composed of gelatin–strontium-substituted calcium phosphate for applications in bone tissue engineering.


Compressive Strength Gelatin Strontium Calcium Phosphate MG63 Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported in part by Grant NSC 100-2221-E-006-263 from the National Science Council of Taiwan.


  1. 1.
    Yang S, Leong KF, Du Z, Chua CK. The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Eng. 2001;7(6):679–89. doi: 10.1089/107632701753337645.CrossRefGoogle Scholar
  2. 2.
    Parikh SN. Bone graft substitutes: past, present, future. J Postgrad Med. 2002;48(2):142–8.Google Scholar
  3. 3.
    Sasaki N, Sudoh Y. X-ray pole figure analysis of apatite crystals and collagen molecules in bone. Calcif Tissue Int. 1997;60(4):361–7.CrossRefGoogle Scholar
  4. 4.
    Lee SB, Jeon HW, Lee YW, Lee YM, Song KW, Park MH, et al. Bio-artificial skin composed of gelatin and (1  – >3), (1 – >6)-beta-glucan. Biomaterials. 2003;24(14):2503–11.CrossRefGoogle Scholar
  5. 5.
    Kuijpers AJ, van Wachem PB, van Luyn MJ, Plantinga JA, Engbers GH, Krijgsveld J, et al. In vivo compatibility and degradation of crosslinked gelatin gels incorporated in knitted Dacron. J Biomed Mater Res. 2000;51(1):136–45.CrossRefGoogle Scholar
  6. 6.
    Yung CW, Wu LQ, Tullman JA, Payne GF, Bentley WE, Barbari TA. Transglutaminase crosslinked gelatin as a tissue engineering scaffold. J Biomed Mater Res Part A. 2007;83(4):1039–46. doi: 10.1002/jbm.a.31431.CrossRefGoogle Scholar
  7. 7.
    Sun L, Berndt CC, Gross KA, Kucuk A. Material fundamentals and clinical performance of plasma-sprayed hydroxyapatite coatings: a review. J Biomed Mater Res. 2001;58(5):570–92.CrossRefGoogle Scholar
  8. 8.
    Song J, Xu J, Filion T, Saiz E, Tomsia AP, Lian JB, et al. Elastomeric high-mineral content hydrogel-hydroxyapatite composites for orthopedic applications. J Biomed Mater Res Part A. 2009;89(4):1098–107. doi: 10.1002/jbm.a.32110.CrossRefGoogle Scholar
  9. 9.
    Kim HW, Kim HE, Salih V. Stimulation of osteoblast responses to biomimetic nanocomposites of gelatin-hydroxyapatite for tissue engineering scaffolds. Biomaterials. 2005;26(25):5221–30. doi: 10.1016/j.biomaterials.2005.01.047.CrossRefGoogle Scholar
  10. 10.
    Kim HW, Knowles JC, Kim HE. Porous scaffolds of gelatin-hydroxyapatite nanocomposites obtained by biomimetic approach: characterization and antibiotic drug release. J Biomed Mater Res B Appl Biomater. 2005;74(2):686–98. doi: 10.1002/jbm.b.30236.CrossRefGoogle Scholar
  11. 11.
    Okayama S, Akao M, Nakamura S, Shin Y, Higashikata M, Aoki H. The mechanical properties and solubility of strontium-substituted hydroxyapatite. Bio-Med Mater Eng. 1991;1(1):11–7.Google Scholar
  12. 12.
    Kim TN, Feng QL, Kim JO, Wu J, Wang H, Chen GC, et al. Antimicrobial effects of metal ions (Ag+, Cu2+, Zn2+) in hydroxyapatite. J Mater Sci. 1998;9(3):129–34.Google Scholar
  13. 13.
    Botelho CM, Brooks RA, Best SM, Lopes MA, Santos JD, Rushton N, et al. Human osteoblast response to silicon-substituted hydroxyapatite. J Biomed Mater Res Part A. 2006;79(3):723–30. doi: 10.1002/jbm.a.30806.CrossRefGoogle Scholar
  14. 14.
    Landi E, Logroscino G, Proietti L, Tampieri A, Sandri M, Sprio S. Biomimetic Mg-substituted hydroxyapatite: from synthesis to in vivo behaviour. J Mater Sci. 2008;19(1):239–47. doi: 10.1007/s10856-006-0032-y.Google Scholar
  15. 15.
    Christoffersen J, Christoffersen MR, Kolthoff N, Barenholdt O. Effects of strontium ions on growth and dissolution of hydroxyapatite and on bone mineral detection. Bone. 1997;20(1):47–54.CrossRefGoogle Scholar
  16. 16.
    Morohashi T, Sano T, Yamada S. Effects of strontium on calcium metabolism in rats. I. A distinction between the pharmacological and toxic doses. Jpn J Pharmacol. 1994;64(3):155–62.CrossRefGoogle Scholar
  17. 17.
    Zhang W, Shen Y, Pan H, Lin K, Liu X, Darvell BW, et al. Effects of strontium in modified biomaterials. Acta Biomater. 2011;7(2):800–8. doi: 10.1016/j.actbio.2010.08.031.CrossRefGoogle Scholar
  18. 18.
    Coulombe J, Faure H, Robin B, Ruat M. In vitro effects of strontium ranelate on the extracellular calcium-sensing receptor. Biochem Biophys Res Commun. 2004;323(4):1184–90. doi: 10.1016/j.bbrc.2004.08.209.CrossRefGoogle Scholar
  19. 19.
    Wong CT, Lu WW, Chan WK, Cheung KM, Luk KD, Lu DS, et al. In vivo cancellous bone remodeling on a strontium-containing hydroxyapatite (sr-HA) bioactive cement. J Biomed Mater Res Part A. 2004;68(3):513–21. doi: 10.1002/jbm.a.20089.CrossRefGoogle Scholar
  20. 20.
    Ni GX, Lu WW, Chiu KY, Li ZY, Fong DY, Luk KD. Strontium-containing hydroxyapatite (Sr-HA) bioactive cement for primary hip replacement: an in vivo study. J Biomed Mater Res B Appl Biomater. 2006;77(2):409–15. doi: 10.1002/jbm.b.30417.CrossRefGoogle Scholar
  21. 21.
    Reginster JY, Lecart MP, Deroisy R, Lousberg C. Strontium ranelate: a new paradigm in the treatment of osteoporosis. Expert Opin Investig Drugs. 2004;13(7):857–64. doi: 10.1517/13543784.13.7.857.CrossRefGoogle Scholar
  22. 22.
    Briot K, Roux C. Strontium ranelate: state of the art. Women’s Health. 2005;1(1):15–21. doi: 10.2217/17455057.1.1.15.CrossRefGoogle Scholar
  23. 23.
    Rodriguez J, Escudero ND, Mandalunis PM. Effect of strontium ranelate on bone remodeling. Acta odontologica latinoamericana. 2012;25(2):208–13.Google Scholar
  24. 24.
    Yang F, Yang D, Tu J, Zheng Q, Cai L, Wang L. Strontium enhances osteogenic differentiation of mesenchymal stem cells and in vivo bone formation by activating Wnt/catenin signaling. Stem Cells. 2011;29(6):981–91. doi: 10.1002/stem.646.CrossRefGoogle Scholar
  25. 25.
    Sila-Asna M, Bunyaratvej A, Maeda S, Kitaguchi H, Bunyaratavej N. Osteoblast differentiation and bone formation gene expression in strontium-inducing bone marrow mesenchymal stem cell. Kobe J Med Sci. 2007;53(1–2):25–35.Google Scholar
  26. 26.
    Davidenko N, Gibb T, Schuster C, Best SM, Campbell JJ, Watson CJ, et al. Biomimetic collagen scaffolds with anisotropic pore architecture. Acta Biomater. 2012;8(2):667–76. doi: 10.1016/j.actbio.2011.09.033.CrossRefGoogle Scholar
  27. 27.
    Madaghiele M, Sannino A, Yannas IV, Spector M. Collagen-based matrices with axially oriented pores. J Biomed Mater Res Part A. 2008;85(3):757–67. doi: 10.1002/jbm.a.31517.CrossRefGoogle Scholar
  28. 28.
    Wu YC, Lee TM, Chiu KH, Shaw SY, Yang CY. A comparative study of the physical and mechanical properties of three natural corals based on the criteria for bone-tissue engineering scaffolds. J Mater Sci. 2009;20(6):1273–80. doi: 10.1007/s10856-009-3695-3.Google Scholar
  29. 29.
    Nikodem A, Scigala K. Impact of some external factors on the values of mechanical parameters determined in tests on bone tissue. Acta Bioeng Biomech Wroclaw Univ Technol. 2010;12(3):85–93.Google Scholar
  30. 30.
    Caverzasio J. Strontium ranelate promotes osteoblastic cell replication through at least two different mechanisms. Bone. 2008;42(6):1131–6. doi: 10.1016/j.bone.2008.02.010.CrossRefGoogle Scholar
  31. 31.
    Lowenstam HA, Weiner S. On biomineralization. New York: Oxford University Press; 1989.Google Scholar
  32. 32.
    Fan H, Ikoma T, Tanaka J, Zhang X. Surface structural biomimetics and the osteoinduction of calcium phosphate biomaterials. J Nanosci Nanotechnol. 2007;7(3):808–13.CrossRefGoogle Scholar
  33. 33.
    Yao CH, Liu BS, Chang CJ, Hsu SH, Chen YS. Preparation of networks of gelatin and genipin as degradable biomaterials. Mater Chem Phys. 2004;83(2–3):204–8. doi: 10.1016/j.mathchemphys.2003.08.027.CrossRefGoogle Scholar
  34. 34.
    Rosellini E, Cristallini C, Barbani N, Vozzi G, Giusti P. Preparation and characterization of alginate/gelatin blend films for cardiac tissue engineering. J Biomed Mater Res Part A. 2009;91(2):447–53. doi: 10.1002/jbm.a.32216.CrossRefGoogle Scholar
  35. 35.
    Odelius K, Hoglund A, Kumar S, Hakkarainen M, Ghosh AK, Bhatnagar N, et al. Porosity and pore size regulate the degradation product profile of polylactide. Biomacromolecules. 2011;12(4):1250–8. doi: 10.1021/bm1015464.CrossRefGoogle Scholar
  36. 36.
    Yunoki S, Ikoma T, Tsuchiya A, Monkawa A, Ohta K, Sotome S, et al. Fabrication and mechanical and tissue ingrowth properties of unidirectionally porous hydroxyapatite/collagen composite. J Biomed Mater Res B Appl Biomater. 2007;80(1):166–73. doi: 10.1002/jbm.b.30581.CrossRefGoogle Scholar
  37. 37.
    Yu H, Matthew HW, Wooley PH, Yang SY. Effect of porosity and pore size on microstructures and mechanical properties of poly-epsilon-caprolactone- hydroxyapatite composites. J Biomed Mater Res B Appl Biomater. 2008;86(2):541–7. doi: 10.1002/jbm.b.31054.CrossRefGoogle Scholar
  38. 38.
    Guarino V, Causa F, Ambrosio L. Porosity and mechanical properties relationship in PCL porous scaffolds. J Appl Biomater Biomech. 2007;5(3):149–57.Google Scholar
  39. 39.
    Chattopadhyay N, Quinn SJ, Kifor O, Ye C, Brown EM. The calcium-sensing receptor (CaR) is involved in strontium ranelate-induced osteoblast proliferation. Biochem Pharmacol. 2007;74(3):438–47. doi: 10.1016/j.bcp.2007.04.020.CrossRefGoogle Scholar
  40. 40.
    Xue W, Moore JL, Hosick HL, Bose S, Bandyopadhyay A, Lu WW, et al. Osteoprecursor cell response to strontium-containing hydroxyapatite ceramics. J Biomed Mater Res Part A. 2006;79(4):804–14. doi: 10.1002/jbm.a.30815.CrossRefGoogle Scholar
  41. 41.
    Boanini E, Torricelli P, Fini M, Bigi A. Osteopenic bone cell response to strontium-substituted hydroxyapatite. J Mater Sci. 2011;22(9):2079–88. doi: 10.1007/s10856-011-4379-3.Google Scholar
  42. 42.
    Aina V, Bergandi L, Lusvardi G, Malavasi G, Imrie FE, Gibson IR, et al. Sr-containing hydroxyapatite: morphologies of HA crystals and bioactivity on osteoblast cells. Mater Sci Eng C. 2013;33(3):1132–42. doi: 10.1016/j.msec.2012.12.005.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Yu-Chun Wu
    • 1
  • Wei-Yu Lin
    • 2
  • Chyun-Yu Yang
    • 3
  • Tzer-Min Lee
    • 2
    • 4
  1. 1.National Laboratory Animal CenterNational Applied Research LaboratoriesTainanTaiwan
  2. 2.Institute of Oral MedicineNational Cheng Kung UniversityTainanTaiwan
  3. 3.Department of OrthopedicNational Cheng Kung UniversityTainanTaiwan
  4. 4.School of DentistryKaohsiung Medical UniversityKaohsiungTaiwan

Personalised recommendations