Biocompatible elastin-like click gels: design, synthesis and characterization

  • Ana M. Testera
  • Alessandra Girotti
  • Israel González de Torre
  • Luis Quintanilla
  • Mercedes Santos
  • Matilde Alonso
  • José Carlos Rodríguez-Cabello
Biomaterials Synthesis and Characterization
Part of the following topical collections:
  1. Biomaterials Synthesis and Characterization


Elastin-like recombinamer click gels (ELR-CGs) for biomedical applications, such as drug delivery or tissue engineering, have been developed by taking advantage of the click reaction (CuAAC) in the absence of traditional crosslinking agents. ELRs are functionalized with alkyne and azide groups using conventional chemical techniques to introduce the reactivity required to carry out the 1,3-dipolar cycloaddition under mild biocompatible conditions, with no toxic by-products and in short reaction times. Hydrogels with moduli in the range 1,000–10,000 Pa have been synthesized, characterized, and tested in vitro against several cell types. The cells embedded into ELR-CGs possessed high viability and proliferation rate. The mechanical properties, porosity and swelling of the resulting ELR-CGs can easily be tuned by adjusting the ELR concentration. We also show that it is possible to replicate different patterns on the hydrogel surface, thus allowing the use of this type of hydrogel to improve applications that require cell guidance or even differentiation depending on the surface topography.


Tissue Engineering PDMS Polymer Concentration Dynamic Shear Modulus Embed Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We acknowledge financial support from the EU via the European regional development fund (ERDF), from the MINECO (MAT-2010-15982, MAT2010-15310, PRI-PIBAR-2011-1403 and MAT2012-38043), the JCyL (Projects VA049A11, VA152A12 and VA155A12), the CIBER-BBN, and the JCyL and the Instituto de Salud Carlos III under the “Network Center of Regenerative Medicine and Cellular Therapy of Castilla and Leon”.


  1. 1.
    Mitragotri S, Lahann J. Physical approaches to biomaterial design. Nat Mater. 2009;8(1):15–23.CrossRefGoogle Scholar
  2. 2.
    Raghavan S, Chen CS. Micropatterned environments in cell biology. Adv Mater. 2004;16(15):1303–13.CrossRefGoogle Scholar
  3. 3.
    Curtis A, Wilkinson C. Topographical control of cells. Biomaterials. 1997;18(24):1573–83.CrossRefGoogle Scholar
  4. 4.
    Falconnet D, Csucs G, Grandin HM, Textor M. Surface engineering approaches to micropattern surfaces for cell-based assays. Biomaterials. 2006;27(16):3044–63.CrossRefGoogle Scholar
  5. 5.
    Curtis A, Wilkinson C. Topographical control of cells. Biomaterials. 1997;18(24):1573–83.CrossRefGoogle Scholar
  6. 6.
    Mata A, Boehm C, Fleischman AJ, Muschler G, Roy S. Analysis of connective tissue progenitor cell behavior on polydimethylsiloxane smooth and channel micro-textures. Biomed Microdevices. 2002;4(4):267–75.CrossRefGoogle Scholar
  7. 7.
    Mata A, Kim EJ, Boehm CA, Fleischman AJ, Muschler GF, Roy S. A three-dimensional scaffold with precise micro-architecture and surface micro-textures. Biomaterials. 2009;30(27):4610–7.CrossRefGoogle Scholar
  8. 8.
    Dalby MJ, Gadegaard N, Tare R, Andar A, Riehle MO, Herzyk P, Wilkinson CD, Oreffo RO. The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nat Mater. 2007;6(12):997–1003.CrossRefGoogle Scholar
  9. 9.
    Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126(4):677–89.CrossRefGoogle Scholar
  10. 10.
    Rodríguez-Cabello JC, Martín L, Alonso M, Arias FJ, Testera AM. “Recombinamers” as advanced materials for the post-oil age. Polymer. 2009;50(22):5159–69.CrossRefGoogle Scholar
  11. 11.
    Arias FJ, Santos M, Fernandez-Colino A, Pinedo G, Girotti A. Recent contributions of elastin-like recombinamers to biomedicine and nanotechnology. Curr Topic Med Chem. 2014;14(6):819–36.CrossRefGoogle Scholar
  12. 12.
    Rincón A, Molina-Martinez I, de Las Heras B, Alonso M, Baílez C, Rodríguez-Cabello J, Herrero-Vanrell R. Biocompatibility of elastin-like polymer poly(VPAVG) microparticles: in vitro and in vivo studies. J Biomed Mater Res. 2006;78(2):343–51.CrossRefGoogle Scholar
  13. 13.
    Wright ER, Conticello VP. Self-assembly of block copolymers derived from elastin-mimetic polypeptide sequences. Adv Drug Deliv Rev. 2002;54(8):1057–73.CrossRefGoogle Scholar
  14. 14.
    Kolb HC, Finn MG, Sharpless KB. Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Edition. 2001;40(11):2004–21.CrossRefGoogle Scholar
  15. 15.
    Meldal M, Tornøe CW. Cu-catalyzed azide − alkyne cycloaddition. Chem Rev. 2008;108(8):2952–3015.CrossRefGoogle Scholar
  16. 16.
    Tornøe CW, Christensen C, Meldal M. Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J Org Chem. 2002;67(9):3057–64.CrossRefGoogle Scholar
  17. 17.
    Rostovtsev VV, Green LG, Fokin VV, Sharpless KB. A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective “Ligation” of azides and terminal alkynes. Angew Chem Int Edition. 2002;41(14):2596–9.CrossRefGoogle Scholar
  18. 18.
    Devlieger R, D'Hooghe T, Timmerman D. Uterine adenomyosis in the infertility clinic. Hum Reprod Update. 2003;9(2):139–47.CrossRefGoogle Scholar
  19. 19.
    Baskin JM, Prescher JA, Laughlin ST, Agard NJ, Chang PV, Miller IA, Lo A, Codelli JA, Bertozzi CR. Copper-free click chemistry for dynamic in vivo imaging. Proc Natl Acad Sci. 2007;104(43):16793–7.CrossRefGoogle Scholar
  20. 20.
    Wenge U, Ehrenschwender T, Wagenknecht H-A. Synthesis of 2′-O-propargyl nucleoside triphosphates for enzymatic oligonucleotide preparation and “click” modification of dna with nile red as fluorescent probe. Bioconjugate Chem. 2013;24(3):301–4.CrossRefGoogle Scholar
  21. 21.
    Laughlin ST, Baskin JM, Amacher SL, Bertozzi CR. In vivo imaging of membrane-associated glycans in developing zebrafish. Science. 2008;320(5876):664–7.CrossRefGoogle Scholar
  22. 22.
    Pierna M, Santos M, Arias FJ, Alonso M, Rodríguez-Cabello JC. Efficient cell and cell-sheet harvesting based on smart surfaces coated with a multifunctional and self-organizing elastin-like recombinamer. Biomacromolecules. 2013;14(6):1893–903.CrossRefGoogle Scholar
  23. 23.
    Ossipov DA, Hilborn J. Poly(vinyl alcohol)-based hydrogels formed by “Click Chemistry”. Macromolecules. 2006;39(5):1709–18.CrossRefGoogle Scholar
  24. 24.
    Jiang Y, Chen J, Deng C, Suuronen EJ, Zhong Z. Click hydrogels, microgels and nanogels: emerging platforms for drug delivery and tissue engineering. Biomaterials. 2014;35(18):4969–85.CrossRefGoogle Scholar
  25. 25.
    Urry DW, Pattanaik A, Xu J, Woods TC, McPherson DT, Parker TM. Elastic protein-based polymers in soft tissue augmentation and generation. J Biomater Sci Polym Ed. 1998;9(10):1015–48.CrossRefGoogle Scholar
  26. 26.
    Urry DW, Parker TM, Reid MC, Gowda DC. Biocompatibility of the bioelastic materials, poly(gvgvp) and its γ-irradiation cross-linked matrix: summary of generic biological test results. J Bioact Compat Polym. 1991;6(3):263–82.CrossRefGoogle Scholar
  27. 27.
    Lampe KJ, Antaris AL, Heilshorn SC. Design of three-dimensional engineered protein hydrogels for tailored control of neurite growth. Acta Biomate. 2013;9(3):5590–9.CrossRefGoogle Scholar
  28. 28.
    Betre H, Setton LA, Meyer DE, Chilkoti A. Characterization of a genetically engineered elastin-like polypeptide for cartilaginous tissue repair. Biomacromolecules. 2002;3(5):910–6.CrossRefGoogle Scholar
  29. 29.
    Betre H, Ong SR, Guilak F, Chilkoti A, Fermor B, Setton LA. Chondrocytic differentiation of human adipose-derived adult stem cells in elastin-like polypeptide. Biomaterials. 2006;27(1):91–9.CrossRefGoogle Scholar
  30. 30.
    Tejeda-Montes E, Smith KH, Poch M, López-Bosque MJ, Martín L, Alonso M, Engel E, Mata A. Engineering membrane scaffolds with both physical and biomolecular signaling. Acta Biomater. 2012;8(3):998–1009.CrossRefGoogle Scholar
  31. 31.
    Martin L, Alonso M, Moller M, Rodriguez-Cabello JC, Mela P. 3D microstructuring of smart bioactive hydrogels based on recombinant elastin-like polymers. Soft Matter. 2009;5(8):1591–3.CrossRefGoogle Scholar
  32. 32.
    Martin L, Arias FJ, Alonso M, Garcia-Arevalo C, Rodriguez-Cabello JC. Rapid micropatterning by temperature-triggered reversible gelation of a recombinant smart elastin-like tetrablock-copolymer. Soft Matter. 2010;6(6):1121–4.CrossRefGoogle Scholar
  33. 33.
    Rodriguez-Cabello JC, Girotti A, Ribeiro A, Arias FJ. Synthesis of genetically engineered protein polymers (recombinamers) as an example of advanced self-assembled smart materials. Methods Mol Biol. 2012;811:17–38 (Clifton, N.J.).CrossRefGoogle Scholar
  34. 34.
    Costa RR, Custodio CA, Arias FJ, Rodriguez-Cabello JC, Mano JF. Layer-by-layer assembly of chitosan and recombinant biopolymers into biomimetic coatings with multiple stimuli-responsive properties. Small. 2011;7(18):2640–9.CrossRefGoogle Scholar
  35. 35.
    Lundquist IV, Pelletier JC. Improved solid-phase peptide synthesis method utilizing α-azide-protected amino acids. Org Lett. 2001;3(5):781–3.CrossRefGoogle Scholar
  36. 36.
    Zeng X, Ruckenstein E. Control of pore sizes in macroporous chitosan and chitin membranes. Ind Eng Chem Res. 1996;35(11):4169–75.CrossRefGoogle Scholar
  37. 37.
    Martin L, Alonso M, Girotti A, Arias FJ, Rodriguez-Cabello JC. Synthesis and characterization of macroporous thermosensitive hydrogels from recombinant elastin-like polymers. Biomacromolecules. 2009;10(11):3015–22.CrossRefGoogle Scholar
  38. 38.
    Trabbic-Carlson K, Setton LA, Chilkoti A. Swelling and mechanical behaviors of chemically cross-linked hydrogels of elastin-like polypeptides. Biomacromolecules. 2003;4(3):572–80.CrossRefGoogle Scholar
  39. 39.
    Kiss MZ, Varghese T, Hall TJ. Viscoelastic characterization of in vitro canine tissue. Phys Med Biol. 2004;49(18):4207–18.CrossRefGoogle Scholar
  40. 40.
    Kiss MZ, Hobson MA, Varghese T, Harter J, Kliewer MA, Hartenbach EM, Zagzebski JA. Frequency-dependent complex modulus of the uterus: preliminary results. Phys Med Biol. 2006;51(15):3683–95.CrossRefGoogle Scholar
  41. 41.
    Oliveira MB, Song W, Martin L, Oliveira SM, Caridade SG, Alonso M, Rodriguez-Cabello JC, Mano JF. Development of an injectable system based on elastin-like recombinamer particles for tissue engineering applications. Soft Matter. 2011;7(14):6426–34.CrossRefGoogle Scholar
  42. 42.
    de Torre IG, Santos M, Quintanilla L, Testera A, Alonso M, Rodríguez-Cabello JC. Elastin-like recombinamer catalyst-free click gels: characterization of poroelastic and intrinsic viscoelastic properties. Acta Biomater. 2014;10(6):2495–505.CrossRefGoogle Scholar
  43. 43.
    Yu Q, Zhou J, Fung YC. Neutral axis location in bending and Young’s modulus of different layers of arterial wall. Am J Physiol. 1993;265(1):H52–60.Google Scholar
  44. 44.
    Erkamp RQ, Wiggins P, Skovoroda AR, Emelianov SY, O’Donnell M. Measuring the elastic modulus of small tissue samples. Ultrason Imaging. 1998;20(1):17–28.CrossRefGoogle Scholar
  45. 45.
    Freeman PM, Natarajan RN, Kimura JH, Andriacchi TP. Chondrocyte cells respond mechanically to compressive loads. J Orthop Res. 1994;12(3):311–20.CrossRefGoogle Scholar
  46. 46.
    Buechner PM, Lakes RS, Swan C, Brand RA. A broadband viscoelastic spectroscopic study of bovine bone: implications for fluid flow. Ann Biomed Eng. 2001;29(8):719–28.CrossRefGoogle Scholar
  47. 47.
    Spiller KL, Laurencin SJ, Charlton D, Maher SA, Lowman AM. Superporous hydrogels for cartilage repair: evaluation of the morphological and mechanical properties. Acta Biomater. 2008;4(1):17–25.CrossRefGoogle Scholar
  48. 48.
    Ghosh S, Gutierrez V, Fernández C, Rodriguez-Perez MA, Viana JC, Reis RL, Mano JF. Dynamic mechanical behavior of starch-based scaffolds in dry and physiologically simulated conditions: effect of porosity and pore size. Acta Biomater. 2008;4(4):950–9.CrossRefGoogle Scholar
  49. 49.
    Curtis A, Wilkinson C. Topographical control of cells. Biomaterials. 1997;18:1573–83.CrossRefGoogle Scholar
  50. 50.
    Falconnet D, Csucs G, Grandin H, Textor M. Surface engineering approaches to micropattern surfaces for cell-based assays. Biomaterials. 2006;27(16):3044–63.CrossRefGoogle Scholar
  51. 51.
    Martin L, Arias JF, Alonso M, Garcia-Arevalo C, Rodriguez-Cabello JC. Rapid micropatterning by temperature-triggered reversible gelation of a recombinant smart elastin-like tetrablock-copolymer. Soft Matter. 2010;6(6):1121–4.CrossRefGoogle Scholar
  52. 52.
    Garcia-Arevalo C, Pierna M, Girotti A, Arias FJ, Rodriguez-Cabello JC. A comparative study of cell behavior on different energetic and bioactive polymeric surfaces made from elastin-like recombinamers. Soft Matter. 2012;8(11):3239–49.CrossRefGoogle Scholar
  53. 53.
    Ozturk N, Girotti A, Kose GT, Rodríguez-Cabello JC, Hasirci V. Dynamic cell culturing and its application to micropatterned, elastin-like protein-modified poly(N-isopropylacrylamide) scaffolds. Biomaterials. 2009;30(29):5417–26.CrossRefGoogle Scholar
  54. 54.
    Yannas IV. Emerging rules for inducing organ regeneration. Biomaterials. 2013;34(2):321–30.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Ana M. Testera
    • 1
    • 2
  • Alessandra Girotti
    • 1
    • 2
  • Israel González de Torre
    • 1
    • 2
  • Luis Quintanilla
    • 1
    • 2
  • Mercedes Santos
    • 1
    • 2
  • Matilde Alonso
    • 1
    • 2
  • José Carlos Rodríguez-Cabello
    • 1
    • 2
  1. 1.Bioforge GroupUniversity of ValladolidValladolidSpain
  2. 2.Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN)ValladolidSpain

Personalised recommendations