Advertisement

HAp/Ti2Ni coatings of high bonding strength on Ti–6Al–4V prepared by the eutectic melting bonding method

  • Ya-Jing Ye
  • Peng-Yan Wang
  • Ya-Peng Li
  • Da-Chuan Yin
Engineering and Nano-engineering Approaches for Medical Devices
Part of the following topical collections:
  1. Engineering and Nano-engineering Approaches for Medical Devices

Abstract

Eutectic melting bonding (EMB) method is a useful technique for fabricating bioactive coatings with relatively high crystallinity and bonding strength with substrate on titanium substrates. Using the EMB method, hydroxyapatite/Ti2Ni coatings were prepared on the surface of Ti–6Al–4V at a relatively low temperature (1,050 °C) in a vacuum furnace. The coatings were then characterized in terms of phase components, microstructure, bonding strength and cytotoxicity. The results showed that the coatings were mainly composed of HAp and Ti2Ni, and the thickness of the coatings was approximately 300 μm. X-ray diffraction analysis showed that the coatings exhibited relatively high crystallinity. The tensile bonding strength between the coatings and the substrates was 69.68 ± 5.15 MPa. The coatings had a porous and rough surface which is suitable for cell attachment and filopodia growth. The cell culture study showed that the number of MG-63 cells increased, and the cell morphology changed with the incubation time. This study showed that the EMB method can be utilized as a potentially powerful method to obtain high quality hydroxyapatite coatings with desired mechanical and biocompatibility properties on Ti-alloy substrates.

Keywords

Bonding Strength High Bonding Strength Isothermal Solidification Eutectic Liquid TTCP 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We would like to thank National Nature and Science Foundation of China (Project number: 50801052), National Basic Research Program of China (973 Program, Project number: 2011CB710905), the Fundamental Research Funds for the Central Universities (Project number: 3102014KYJD019) and Fundamental Research Foundation of Northwestern Polytechnical University (Project number: JC20100244) for their financial support.

References

  1. 1.
    Tercero JE, Namin S, Lahiri D, Balani K, Tsoukias N, Agarwal A. Effect of carbon nanotube and aluminum oxide addition on plasma-sprayed hydroxyapatite coating’s mechanical properties and biocompatibility. Mater Sci Eng C. 2009;29:2195.CrossRefGoogle Scholar
  2. 2.
    Evis Z, Doremus RH. Coatings of hydroxyapatite—nanosize alpha alumina composites on Ti-6Al-4V. Mater Lett. 2005;59:3824.CrossRefGoogle Scholar
  3. 3.
    Fielding GA, Roy M, Bandyopadhyay A, Bose S. Antibacterial and biological characteristics of silver containing and strontium doped plasma sprayed hydroxyapatite coatings. Acta Biomater. 2012;8:3144.CrossRefGoogle Scholar
  4. 4.
    Yatongchai C, Wren AW, Curran DJ, Hampshire S, Towler MR. Investigating the effect of SiO2-TiO2-CaO-Na2O-ZnO bioactive glass doped hydroxyapatite: characterisation and structural evaluation. J Mater Sci Mater Med. 2014;25:1645. doi: 10.1007/s10856-014-5215-3.CrossRefGoogle Scholar
  5. 5.
    Gittens RA, Olivares-Navarrete R, Cheng A, Anderson DM, McLachlan T, Stephan I, et al. The roles of titanium surface micro/nanotopography and wettability on the differential response of human osteoblast lineage cells. Acta Biomater. 2013;9:6268. doi: 10.1016/j.actbio.2012.12.002.CrossRefGoogle Scholar
  6. 6.
    Tan G, Tan Y, Ni G, Lan G, Zhou L, Yu P, et al. Controlled oxidative nanopatterning of microrough titanium surfaces for improving osteogenic activity. J Mater Sci Mater Med. 2014;25:1875. doi: 10.1007/s10856-014-5232-2.CrossRefGoogle Scholar
  7. 7.
    Chang CK, Wu JS, Mao DL, Ding CX. Mechanical and histological evaluations of hydroxyapatite-coated and noncoated Ti6Al4V implants in tibia bone. J Biomed Mater Res A. 2001;56:17.CrossRefGoogle Scholar
  8. 8.
    Zheng XB, Huang MH, Ding CX. Bond strength of plasma-sprayed hydroxyapatite/Ti composite coatings. Biomaterials. 2000;21:841.CrossRefGoogle Scholar
  9. 9.
    Zheng M, Fan D, Li XK, Zhang JB, Liu QB. Microstructure and in vitro bioactivity of laser-cladded bioceramic coating on titanium alloy in a simulated body fluid. J Alloys Compd. 2010;489:211. doi: 10.1016/j.jallcom.2009.09.054.CrossRefGoogle Scholar
  10. 10.
    Sun LM, Berndt CC, Gross KA, Kucuk A. Material fundamentals and clinical performance of plasma-sprayed hydroxyapatite coatings: a review. J Biomed Mater Res A. 2001;58:570.CrossRefGoogle Scholar
  11. 11.
    Champion E. Sintering of calcium phosphate bioceramics. Acta. Biomater. 2013;9:5855. doi: 10.1016/j.actbio.2012.11.029.CrossRefGoogle Scholar
  12. 12.
    Laonapakul T, Nimkerdphol AR, Otsuka Y, Mutoh Y. Failure behavior of plasma-sprayed HAp coating on commercially pure titanium substrate in simulated body fluid (SBF) under bending load. J Mech Behav Biomed Mater. 2012;15:153. doi: 10.1016/j.jmbbm.2012.05.017.CrossRefGoogle Scholar
  13. 13.
    Ohtsu N, Takahara T, Hirano M, Arai H. Effect of treatment temperature on the biocompatibility and mechanical strength of hydroxyapatite coating formed on titanium using calcium phosphate slurry. Surf Coat Technol. 2014;239:185. doi: 10.1016/j.surfcoat.2013.11.038.CrossRefGoogle Scholar
  14. 14.
    Ohtsu N, Nakamura Y, Semboshi S. Thin hydroxyapatite coating on titanium fabricated by chemical coating process using calcium phosphate slurry. Surf Coat Technol. 2012;206:2616. doi: 10.1016/j.surfcoat.2011.11.022.CrossRefGoogle Scholar
  15. 15.
    Tonsuaadu K, Gross KA, Pluduma L, Veiderma M. A review on the thermal stability of calcium apatites. J Therm Anal Calorim. 2012;110:647. doi: 10.1007/s10973-011-1877-y.CrossRefGoogle Scholar
  16. 16.
    Niinomi M. Recent Metallic Materials for Biomedical Applications. Metall Mater Trans A. 2002;33A:477.CrossRefGoogle Scholar
  17. 17.
    Baker H, Okamoto H. ASM handbook. Alloy phase diagrams. 1992;3:2.Google Scholar
  18. 18.
    Kweh SWK, Khor KA, Cheang P. The production and characterization of hydroxyapatite (HA) powders. J Mater Process Technol. 1999;89–90:373.CrossRefGoogle Scholar
  19. 19.
    Xiong JT, Zhang FS, Li JL, Huang WD. Transient liquid phase bonding of magnesium alloy (AZ31B) and titanium alloy (Ti6Al4V) using aluminium interlayer. Rare Metal Mater Eng. 2006;35:1677.Google Scholar
  20. 20.
    Oh IK, Nomura N, Chiba A, Murayama Y, Masahashi N, Lee BT, et al. Microstructures and bond strengths of plasma-sprayed hydroxyapatite coatings on porous titanium substrates. J Mater Sci Mater Med. 2005;16:635. doi: 10.1007/s10856-005-2534-4.CrossRefGoogle Scholar
  21. 21.
    Sam S, Kundu S, Chatterjee S. Diffusion bonding of titanium alloy to micro-duplex stainless steel using a nickel alloy interlayer: interface microstructure and strength properties. Mater Des. 2012;40:237. doi: 10.1016/j.matdes.2012.02.058.CrossRefGoogle Scholar
  22. 22.
    Kundu S, Sam S, Chatterjee S. Interfacial reactions and strength properties in dissimilar titanium alloy/Ni alloy/microduplex stainless steel diffusion bonded joints. Mater Sci Eng A. 2012;560:288. doi: 10.1016/j.msea.2012.09.069.CrossRefGoogle Scholar
  23. 23.
    Kundu S, Chatterjee S. Interfacial microstructure and mechanical properties of diffusion-bonded titanium-stainless steel joints using a nickel interlayer. Mater Sci Eng A. 2006;425:107.CrossRefGoogle Scholar
  24. 24.
    Yan J, Zhao D, Wang C, Wang L, Wang Y, Yang S. Vacuum hot roll bonding of titanium alloy and stainless steel using nickel interlayer. Mater Sci Technol. 2009;25:914.CrossRefGoogle Scholar
  25. 25.
    He P, Feng J, Zhang B, Qian Y. Microstructure and strength of diffusion-bonded joints of TiAl base alloy to steel. Mater Charact. 2002;48:401.CrossRefGoogle Scholar
  26. 26.
    Liang C, Gong H. Fundamental influence of hydrogen on various properties of -titanium. Int J Hydrogen Energy. 2010;35:3812.CrossRefGoogle Scholar
  27. 27.
    Masahiro K, Noboru S. Effects of temperature, thickness and atmosphere on mixing in Au-Ti bilayer thin films. J Mater Sci. 1993;28:5088.CrossRefGoogle Scholar
  28. 28.
    Illingworth T, Golosnoy I, Clyne T. Modelling of transient liquid phase bonding in binary systems—a new parametric study. Mater Sci Eng A. 2007;445:493.CrossRefGoogle Scholar
  29. 29.
    Cha P, Yeon D, Yoon J. A phase field model for isothermal solidification of multicomponent alloys. Acta Mater. 2001;49:3295.CrossRefGoogle Scholar
  30. 30.
    MacDonald W, Eagar T. Transient liquid phase bonding. Annu Rev Mater Sci. 1992;22:23.CrossRefGoogle Scholar
  31. 31.
    Bernardini J, Lexcellent C, Daroczi L, Beke D. Ni diffusion in near-equiatomic Ni-Ti and Ni-Ti (-Cu) alloys. Philos Mag. 2003;83:329.CrossRefGoogle Scholar
  32. 32.
    Thirunavukarasu G, Kundu S, Mishra B, Chatterjee S. Effect of bonding temperature on interfacial reaction and mechanical properties of diffusion-bonded joint between Ti-6Al-4V and 304 stainless steel using nickel as an intermediate material. Metall Mater Trans A. 2013;45:2067.CrossRefGoogle Scholar
  33. 33.
    Pretorius R, Vredenberg A, Saris F, De Reus R. Prediction of phase formation sequence and phase stability in binary metal-aluminum thin-film systems using the effective heat of formation rule. J Appl Phys. 1991;70:3636.CrossRefGoogle Scholar
  34. 34.
    Xiong JT, Li JL, Lu XC, Yang WH, Zhang FS, Huang WD. Morphology and reaction kinetics of the interface phase formed by diffusion bonding micron-thick Mo-Al rolled foils. Acta Metall Sin. 2008;44:943.Google Scholar
  35. 35.
    Chou L, Marek B, Wagner WR. Effects of hydroxylapatite coating crystallinity on biosolubility, cell attachment efficiency and proliferation in vitro. Biomaterials. 1999;20:977.CrossRefGoogle Scholar
  36. 36.
    O’Hare P, Meenan BJ, Burke GA, Byrne G, Dowling D, Hunt JA. Biological responses to hydroxyapatite surfaces deposited via a co-incident microblasting technique. Biomaterials. 2010;31:515. doi: 10.1016/j.biomaterials.2009.09.067.CrossRefGoogle Scholar
  37. 37.
    Pattanayak DK, Rao BT, Mohan TRR. Calcium phosphate bioceramics and bioceramic composites. J Sol-Gel Sci Technol. 2011;59:432. doi: 10.1007/s10971-010-2354-y.CrossRefGoogle Scholar
  38. 38.
    Chen XC, Zhang MJ, Pu XM, Yin GF, Liao XM, Huang ZB, et al. Characteristics of heat-treated plasma-sprayed CaO-MgO-SiO2-based bioactive glass-ceramic coatings on Ti-6Al-4V alloy. Surf Coat Technol. 2014;249:97. doi: 10.1016/j.surfcoat.2014.03.056.CrossRefGoogle Scholar
  39. 39.
    Anselme K. Osteoblast adhesion on biomaterials. Biomaterials. 2000;21:667.CrossRefGoogle Scholar
  40. 40.
    Zhao YT, Zhang Z, Dai QX, Lin DY, Li SM. Microstructure and bond strength of HA(+ZrO2+Y2O3)/Ti6Al4V composite coatings fabricated by RF magnetron sputtering. Surf Coat Technol. 2006;200:5354. doi: 10.1016/j.surfcoat.2005.06.010.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Ya-Jing Ye
    • 1
    • 2
  • Peng-Yan Wang
    • 1
    • 2
  • Ya-Peng Li
    • 1
    • 2
  • Da-Chuan Yin
    • 1
    • 2
  1. 1.Key Laboratory for Space Bioscience and Biotechnology, School of Life SciencesNorthwestern Polytechnical UniversityXi’anChina
  2. 2.Institute of Special Environmental BiophysicsNorthwestern Polytechnical UniversityXi’anChina

Personalised recommendations