Skip to main content

Advertisement

Log in

In situ synthesis of hydroxyapatite nanocomposites using iron oxide nanofluids at ambient conditions

  • Biomaterials Synthesis and Characterization
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

This paper describes a simple method for the room temperature synthesis of magnetite/hydroxyapatite composite nanocomposites using ferrofluids. The in situ synthesis of magnetic–hydroxyapatite results in a homogenous distribution of the two phases as seen both in transmission electron micrographs and assembled to a micron range in the confocal micrographs. The selected area diffraction pattern analysis shows the presence of both phases of iron oxide and hydroxyapatite. To the dialyzed ferrofluid, the constituents of hydroxyapatite synthesis was added, the presence of the superparamagnetic iron oxide particles imparts directionality to the hydroxyapatite crystal growth. Electron probe microanalysis confirms the co-existence of both iron and calcium atoms. Vibrating Sample magnetometer data shows magnetization three times more than the parent ferrofluid, the local concentration of iron oxide nanoparticles affects the strength of dipolar interparticle interactions changing the energy barrier for determining the collective magnetic behavior of the sample. The limitations inherent to the use of external magnetic fields which can be circumvented by the introduction of internal magnets located in the proximity of the target by a minimal surgery or by using a superparamagnetic scaffold under the influence of externally applied magnetic field inspires us to increase the magnetization of our samples. The composite in addition shows anti-bacterial properties against the two gram (−ve) bacteria tested. This work is significant as magnetite–hydroxyapatite composites are attracting a lot of attention as adsorbents, catalysts, hyperthermia agents and even as regenerative medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sinha A, Nayar S, Agrawal A, Bhattacharyya D, Ramachandrarao P. Synthesis of nanosized and microporous precipitated hydroxyapatite in synthetic polymers and biopolymers. J Am Ceram Soc. 2003;86:357–9.

    Article  Google Scholar 

  2. Moroz P, Jones SK, Gray BN. Magnetically mediated hyperthermia: current status and future directions. Int J Hyperth. 2002;18:267–84.

    Google Scholar 

  3. Johannsen M, Jordan A, Scholz R, Koch M, Lein M, Deger S, Roigas J, Jung K, Loening S. Evaluation of magnetic fluid hyperthermia in a standard rat model of prostate cancer. J Endourol. 2004;18:495–500.

    Article  Google Scholar 

  4. Mornet S, Vasseur S, Grasset F, Duguet E. Magnetic nanoparticle design for medical diagnosis and therapy. J Mater Chem. 2004;14:21611.

    Article  Google Scholar 

  5. Kawasaki ES, Player A. Nanotechnology, nanomedicine, and the development of new effective therapies for cancer. NanoMed NanoTechnol Biol Med. 2005;1:101–9.

    Article  Google Scholar 

  6. Bhattacharya S, Mallik D, Nayar S. Comparative study of biomimetic iron oxides synthesized using microwave induced and conventional method. IEEE Trans Magn. 2011;47:1647–52.

    Article  Google Scholar 

  7. Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials. 2005;26:3995.

    Article  Google Scholar 

  8. Pon-on W, Meejoo S, Tang IM. Incorporation of iron into nano hydroxyapatite particles synthesized by the microwave process. Int J Nanosci. 2007;6:9.

    Article  Google Scholar 

  9. Tran N, Webster TJ. Increased osteoblast functions in the presence of hydroxyapatite-coated iron oxide nanoparticles. Acta Biomater. 2011;7(3):1298–306.

    Article  Google Scholar 

  10. Desport B, Carpena J, Lacout JL, Borschneck D, Gattacceca J. Characterization of a calcium phospho-silicated apatite with iron oxide inclusions. J Cryst Growth. 2011;316:164–71.

    Article  Google Scholar 

  11. Vallet-Reg M. Ceramics for medical applications. J Chem Soc Dalton Trans. 2001;2:97.

    Article  Google Scholar 

  12. Kumta PN, Sfeir C, Lee DH, Olton D, Choi D. Nanostructured calcium phosphates for biomedical applications: novel synthesis and characterization. Acta Biomater. 2005;1:65.

    Article  Google Scholar 

  13. Ohgushi H, Caplan AI. Stem cell technology and bioceramics: from cell to gene engineering. J Biomed Mater Res Appl Biomater. 1999;48:913.

    Article  Google Scholar 

  14. Dabbs DM, Aksay Annu IA. Silicon incorporation in hydroxylapatite obtained by controlled crystallization. Rev Phys Chem. 2000;51:601.

    Article  Google Scholar 

  15. Siddharthan A, Seshadri SK, Sampath Kumar TS. Influence of microwave power on nanosized hydroxyapatite particles. Scr Mater. 2006;55:175.

    Article  Google Scholar 

  16. Jiang M, Terra J, Rossi AM, Morales MA, Baggiosaitovitch EM, Ellis DE. Fe2+/Fe3+ substitution in hydroxyapatite: theory and experiment. Phys Rev B. 2002;66(22):224107–22.

    Article  Google Scholar 

  17. Iwasaki T, Nakatsuka R, Murase K, Takata H, Nakamura H, Watano S. Simple and rapid syntheisis of magnetite/hydroxyapatite composites for hyperthermia treatments via a mechanochemical route. Int J Mol Sci. 2013;14:9365–78.

    Article  Google Scholar 

  18. Tampieri A, D’Alessandroa T, Sandri M, Sprio S, Landi E, Bertinetti L, Panseri S, Pepponi G, Goettlicher J, Bañobre-López M, Rivas J. Intrinsic magnetism and hyperthermia in bioactive Fe-doped hydroxyapatite. Acta Biomater. 2012;8:843–51.

    Article  Google Scholar 

  19. Cornell RM, Schwertmann U. The iron oxides. VCH verlagesellschaft: Federal Republic of Germany; 1996.

    Google Scholar 

  20. Jiang M, Terra J, Rossi MA, Morales MA, Saitovitch EMB, Ellis DE. Fe2+/Fe3+ substitution in hydroxyapatite: theory and experiment. Phys Rev B Condens Mater Phys. 2002;66:224107–15.

    Article  Google Scholar 

  21. Wu HC, Wang TW, Sun JS, Wang WH, Lin FH. A novel biomagnetic nanoparticle based on hydroxyapatite. Nanotechnol. 2007;18:165601–10.

    Article  Google Scholar 

  22. Kawasaki T, Ikeda K, Takahashi S, Kuboki Y. Further study of hydroxyapatite high-performance liquid chromatography using both proteins and nucleic acids, and a new technique to increase chromatographic efficiency. Eur J Biochem. 1986;155:249.

    Article  Google Scholar 

  23. Mann S. Biomimetic materials chemistry. New York: VCH publishers, Inc.; 1996.

    Google Scholar 

  24. Mir A, Mallik D, Bhattacharyya S, Mahata D, Sinha A, Nayar S. Aqueous ferrofluids as templates for magnetic hydroxyapatite nanocomposites. J Mater Sci Mater Med. 2010;21:2365–9.

    Article  Google Scholar 

  25. Bhattacharya S, Sheikh L, Tiwari V, Ghosh M, Patel JN, Patel AB, Nayar S. Protein-polymer functionalized aqueous ferrofluids showing High T2 relaxivity. J Biomed Nanotechnol. 2014;10(5):811–9.

    Article  Google Scholar 

  26. Zhou G, Song W, Hou Y, Li Q, Deng X. Fan Y. Ultrasound-assisted fabrication of a biocompatible magnetic hydroxyapatite. 2013;doi:10.1002/2013/jbm.a.35043.

    Google Scholar 

  27. Karunamoorthi R, Kumar GS, Prasad AI, Vatsa RK, Thamizhavel A, Girija EK. Fabrication of a novel biocompatible magnetic biomaterial with hyperthermia potential. J Am Ceram Soc. 2014;97(4):1115–22.

    Article  Google Scholar 

  28. Arias JL, Reddy LH, Couvreur P. Fe3O4/chitosan nanocomposite for magnetic drug targeting to cancer. J Mater Chem. 2012;22:7622–32.

    Article  Google Scholar 

  29. Arias JL, Reddy LH, Couvreur P. Magnetoresponsive squalenoyl gemcitabine composite nanoparticles for cancer active targeting. Langmuir. 2008;24:7512–9.

    Article  Google Scholar 

  30. Predoi D, Barsan M, Andronescu E, Vatasescu-Balcan RA, Costache M. Hydroxyapatite-iron oxide bioceramic prepared using nano-size powders. J Optoelectron Adv Mater. 2007;9(11):3609–13.

    Google Scholar 

  31. Hoppe CE, Rivadulla F, Vidal-Vidal J, Lopez-Quintela MA, Rivas J. Magnetic relaxation of gamma Fe2O3 nanoparticles arrangements and electronic phase-segregated. J Nanosci Nanotechnol. 2008;8:2883–90.

    Google Scholar 

  32. Klabunde KJ, Mulukutla RS. Nanoscale materials in chemistry, chap. 7. New York: Wiley Interscience; 2001. p. 223–61.

  33. Tran N, Mir A, Mallik D, Sinha A, Nayar S, Webster TJ. Bactericidal effect of iron oxide nanoparticles on Staphylococcus aureus. Int J Nanomed. 2010;5:277–83.

    Google Scholar 

  34. Panseri S, Cunha C, D’Alessandro T, Sandri M, Russo A, Giavaresi G, Marcacci M, Hung CT, Tampieri A. Magnetic hydroxyapatite bone substitutes to enhance tissue regeneration: evaluation in vitro using osteoblast-like cells and in vivo in a bone defect. PLoS One. 2012;7(6):e38710.

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge CSIR, Ministry of Science and Technology, Govt. of India for providing financial assistance from the network project “ESC-0103” and “OLP-0230”. Lubna acknowledges Department of Science & Technology (DST), Govt. of India for providing INSPIRE fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suprabha Nayar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheikh, L., Mahto, N. & Nayar, S. In situ synthesis of hydroxyapatite nanocomposites using iron oxide nanofluids at ambient conditions. J Mater Sci: Mater Med 26, 47 (2015). https://doi.org/10.1007/s10856-015-5393-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-015-5393-7

Keywords

Navigation