Electrospun scaffolds of silk fibroin and poly(lactide-co-glycolide) for endothelial cell growth

  • Wei Zhou
  • Yakai Feng
  • Jing Yang
  • Jiaxu Fan
  • Juan Lv
  • Li Zhang
  • Jintang Guo
  • Xiangkui Ren
  • Wencheng Zhang
Tissue Engineering Constructs and Cell Substrates
Part of the following topical collections:
  1. Tissue Engineering Constructs and Cell Substrates


Electrospun scaffolds of silk fibroin (SF) and poly(lactide-co-glycolide) (PLGA) were prepared to mimic the morphology and chemistry of the extracellular matrix. The SF/PLGA scaffolds were treated with ethanol to improve their usability. After ethanol treatment the scaffolds exhibited a smooth surface and uniform fibers. SF transformed from random coil conformation to β-sheet structure after ethanol treatment, so that the SF/PLGA scaffolds showed low hydrophilicity and dissolving rate in water. The mechanical properties and the hydrophilicity of the blended fibrous scaffolds were affected by the weight ratio of SF and PLGA. During degradation of ethanol-treated SF/PLGA scaffolds in vitro, the fibers became thin along with the degradation time. Human umbilical vein endothelial cells (HUVECs) were seeded onto the ethanol-treated nanofibrous scaffolds for cell viability, attachment and morphogenesis studies. These SF/PLGA scaffolds could enhance the viability, spreading and attachment of HUVECs. Based on these results, these ethanol-treated scaffolds are proposed to be a good candidate for endothelial cell growth.


Human Umbilical Vein Endothelial Cell Water Contact Angle Silk Fibroin Electrospun Fiber Composite Scaffold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This project was supported by the National Natural Science Foundation of China (Grant No. 31370969), the International Cooperation from Ministry of Science and Technology of China (Grant No. 2013DFG52040, 2008DFA51170), Ph.D. Programs Foundation of Ministry of Education of China (No. 20120032110073) and the Program of Introducing Talents of Discipline to Universities of China (No. B06006).


  1. 1.
    Borcard FO, Staedler D, Comas H, Juillerat FK, Sturzenegger PN, Heuberger R, Gonzenbach UT, Juillerat-Jeanneret L, Gerber-Lemaire S. Chemical functionalization of bioceramics to enhance endothelial cells adhesion for tissue engineering. J Med Chem. 2012;55:7988–97.CrossRefGoogle Scholar
  2. 2.
    Langer R, Tirrell DA. Designing materials for biology and medicine. Nature. 2004;428:487–92.CrossRefGoogle Scholar
  3. 3.
    Li L, Li H, Qian Y, Li X, Singh GK, Zhong L, Liu W, Lv Y, Cai K, Yang L. Electrospun poly(ε-caprolactone)/silk fibroin core-sheath nanofibers and their potential applications in tissue engineering and drug release. Int J Biol Macromol. 2011;49:223–32.CrossRefGoogle Scholar
  4. 4.
    Kai D, Jin G, Prabhakaran MP, Ramakrishna S. Electrospun synthetic and natural nanofibers for regenerative medicine and stem cells. J Biotechnol. 2013;8:59–72.CrossRefGoogle Scholar
  5. 5.
    Xu C, Inai R, Kotaki MS, Ramakrishna S. Aligned biodegradable nanofibrous structure: a potential scaffold for blood vessel engineering. Biomaterials. 2004;25:877–86.CrossRefGoogle Scholar
  6. 6.
    Yuan W, Feng Y, Wang H, Yang D, An B, Zhang W, Khan M, Guo J. Hemocompatible surface of electrospun nanofibrous scaffolds by ATRP modification. Mater Sci Eng C Mater Biol Appl. 2013;33:3644–51.CrossRefGoogle Scholar
  7. 7.
    Alsberg E, Feinstein E, Joy MP, Prentiss M, Ingber DE. Magnetically-guided self-assembly of fibrin matrices with ordered nano-scale structure for tissue engineering. Tissue Eng. 2006;12:3247–56.CrossRefGoogle Scholar
  8. 8.
    Wang H, Feng Y, An B, Zhang W, Sun M, Fang Z, Yuan W, Khan M. Fabrication of PU/PEGMA crosslinked hybrid scaffolds by in situ UV photopolymerization favoring human endothelial cells growth for vascular tissue engineering. J Mater Sci Mater Med. 2012;23:1499–510.CrossRefGoogle Scholar
  9. 9.
    Wang H, Feng Y, Behl M, Lendlein A, Zhao H, Xiao R, Lu J, Zhang L, Guo J. Hemocompatible polyurethane/gelatin–heparin nanofibrous scaffolds formed by a bi-layer electrospinning technique as potential artificial blood vessels. Front Chem Sci Eng. 2011;5:392–400.CrossRefGoogle Scholar
  10. 10.
    Wang H, Feng Y, Fang Z, Yuan W, Khan M. Co-electrospun blends of PU and PEG as potential biocompatible scaffolds for small-diameter vascular tissue engineering. Mater Sci Eng C Mater Biol Appl. 2012;32:2306–15.CrossRefGoogle Scholar
  11. 11.
    Wang H, Feng Y, Zhao H, Xiao R, Lu J, Zhang L, Guo J. Electrospun hemocompatible PU/gelatin–heparin nanofibrous bilayer scaffolds as potential artificial blood vessels. Macromol Res. 2012;20:347–50.CrossRefGoogle Scholar
  12. 12.
    Yoshimoto H, Shin Y, Terai H, Vacanti JP. A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials. 2003;24:2077–82.CrossRefGoogle Scholar
  13. 13.
    Meinel L, Hofmann S, Karageorgiou V, Kirker-Head C, McCool J, Gronowicz G, Zichner L, Langer R, Vunjak-Novakovic G, Kaplan DL. The inflammatory responses to silk films in vitro and in vivo. Biomaterials. 2005;26:147–55.CrossRefGoogle Scholar
  14. 14.
    Motta A, Migliaresi C, Faccioni F, Torricelli P, Fini M, Giardino R. Fibroin hydrogels for biomedical applications: preparation, characterization and in vitro cell culture studies. J Biomater Sci Polym Ed. 2004;15:851–64.CrossRefGoogle Scholar
  15. 15.
    Zhang YQ, Zhou WL, Shen WD, Chen YH, Zha XM, Shirai K, Kiguchi K. Synthesis, characterization and immunogenicity of silk fibroin-l-asparaginase bioconjugates. J Biotechnol. 2005;120:315–26.CrossRefGoogle Scholar
  16. 16.
    Guziewicz N, Best A, Perez-Ramirez B, Kaplan DL. Lyophilized silk fibroin hydrogels for the sustained local delivery of therapeutic monoclonal antibodies. Biomaterials. 2011;32:2642–50.CrossRefGoogle Scholar
  17. 17.
    Shahverdi S, Hajimiri M, Esfandiari MA, Larijani B, Atyabi F, Rajabiani A, Dehpour AR, Gharehaghaji AA, Dinarvand R. Fabrication and structure analysis of poly(lactide-co-glycolic acid)/silk fibroin hybrid scaffold for wound dressing applications. Int J Pharm. 2014;473:345–55.CrossRefGoogle Scholar
  18. 18.
    Marelli B, Alessandrino A, Farè S. Compliant electrospun silk fibroin tubes for small vessel bypass grafting. Acta Biomater. 2010;6:4019–26.CrossRefGoogle Scholar
  19. 19.
    Liu S, Dong C, Lu G. Bilayered vascular grafts based on silk proteins. Acta Biomater. 2013;9:8991–9003.CrossRefGoogle Scholar
  20. 20.
    Nakazawa Y, Sato M, Takahashi R, Aytemiz D, Takabayashi C, Tamura T, Enomoto S, Sata M, Asakura T. Development of small-diameter vascular grafts based on silk fibroin fibers from Bombyx mori for vascular regeneration. J Biomater Sci Polym Ed. 2011;22:195–206.CrossRefGoogle Scholar
  21. 21.
    Lovett M, Cannizzaro C, Daheron L, Messmer B, Vunjak-Novakovic G, Kaplan DL. Silk fibroin microtubes for blood vessel engineering. Biomaterials. 2007;28:5271–9.CrossRefGoogle Scholar
  22. 22.
    Soffer L, Wang X, Zhang X, Kluge J, Dorfmann L, Kaplan DL, Leisk G. Silk-based electrospun tubular scaffolds for tissue engineered vascular grafts. J Biomater Sci Ploym Ed. 2008;19:653–64.CrossRefGoogle Scholar
  23. 23.
    Zhang XH, Baughman CB, Kaplan DL. In vitro evaluation of electrospun silk fibroin scaffolds for vascular cell growth. Biomaterials. 2008;29:2217–27.CrossRefGoogle Scholar
  24. 24.
    Zhang X, Wang X, Keshav V, Wang X, Johanas JT, Leisk GG, Kaplan DL. Dynamic culture conditions to generate silk-based tissue-engineered vascular grafts. Biomaterials. 2009;30:3213–23.CrossRefGoogle Scholar
  25. 25.
    Wang S, Zhang Y, Wang H, Yin G, Dong Z. Fabrication and properties of the electrospun polylactide/silk fibroin–gelatin composite tubular scaffold. Biomacromolecules. 2009;10:2240–4.CrossRefGoogle Scholar
  26. 26.
    Liu X, Zhang C, Xu W, Liu H, Ouyang C. Blend films of silk fibroin and water-insoluble polyurethane prepared from an ionic liquid. Mater Lett. 2011;65:2489–91.CrossRefGoogle Scholar
  27. 27.
    Stoppato M, Stevens HY, Carletti E, Migliaresi C, Motta A, Guldberg RE. Effects of silk fibroin fiber incorporation on mechanical properties, endothelial cell colonization and vascularization of PDLLA scaffolds. Biomaterials. 2013;34:4573–81.CrossRefGoogle Scholar
  28. 28.
    Wenk E, Meinel AJ, Wildy S, Merkle HP, Meinel L. Microporous silk fibroin scaffolds embedding PLGA microparticles for controlled growth factor delivery in tissue engineering. Biomaterials. 2009;30:2571–81.CrossRefGoogle Scholar
  29. 29.
    Zhou S, Peng H, Yu X, Zheng X, Cui W, Zhang Z, Li X, Wang J, Weng J, Jia W, Li F. Preparation and characterization of a novel electrospun spider silk fibroin/poly(d,l-lactide) composite fiber. J Phys Chem B. 2008;112:11209–16.CrossRefGoogle Scholar
  30. 30.
    Li S, Wu H, Hu XD, Tu CQ, Pei FX, Wang GL, Lin W, Fan HS. Preparation of electrospun PLGA–silk fibroin nanofibers-based nerve conduits and evaluation in vivo. Artif Cell Blood Substit Immobil Biotechnol. 2012;40:171–8.CrossRefGoogle Scholar
  31. 31.
    McClure M, Sell S, Ayres C, Simpson DG, Bowlin GL. Electrospinning-aligned and random polydioxanone–polycaprolactone–silk fibroin-blended scaffolds: geometry for a vascular matrix. Biomed Mater. 2009;4:055010.CrossRefGoogle Scholar
  32. 32.
    Zhang K, Wang H, Huang C, Su Y, Mo X, Ikada Y. Fabrication of silk fibroin blended P(LLA-CL) nanofibrous scaffolds for tissue engineering. J Biomed Mater Res A. 2010;93:984–93.Google Scholar
  33. 33.
    Liu H, Xu W, Zou H, Ke G, Li W, Ouyang C. Feasibility of wet spinning of silk-inspired polyurethane elastic biofiber. Mater Lett. 2008;62:1949–52.CrossRefGoogle Scholar
  34. 34.
    Jin HJ, Fridrikh SV, Rutledge GC, Kaplan DL. Electrospinning Bombyx mori silk with poly(ethylene oxide). Biomacromolecules. 2002;3:1233–9.CrossRefGoogle Scholar
  35. 35.
    Horst M, Milleret V, Nötzli S, Madduri S, Sulser T, Gobet R, Eberli D. Increased porosity of electrospun hybrid scaffolds improved bladder tissue regeneration. J Biomed Mater Res A. 2014;102:2116–24.CrossRefGoogle Scholar
  36. 36.
    Zhang JG, Mo XM. Current research on electrospinning of silk fibroin and its blends with natural and synthetic biodegradable polymers. Front Mater Sci. 2013;7:1–14.CrossRefGoogle Scholar
  37. 37.
    Ju HW, Sheikh FA, Moon BM, Park HJ, Lee OJ, Kim JH, Eun JJ, Khang G, Park CH. Fabrication of poly(lactic-co-glycolic acid) scaffolds containing silk fibroin scaffolds for tissue engineering applications. J Biomed Mater Res A. 2014;102:2713–24.CrossRefGoogle Scholar
  38. 38.
    Hasan A, Memic A, Annabi N, Hossain M, Paul A, Dokmeci MR, Dehghani F, Khademhosseini A. Electrospun scaffolds for tissue engineering of vascular grafts. Acta Biomater. 2014;10:11–25.CrossRefGoogle Scholar
  39. 39.
    Farokhi M, Mottaghitalab F, Shokrgozar MA, Ai J, Hadjati J, Azami M. Bio-hybrid silk fibroin/calcium phosphate/PLGA nanocomposite scaffold to control the delivery of vascular endothelial growth factor. Mater Sci Eng C Mater Biol Appl. 2014;35:401–10.CrossRefGoogle Scholar
  40. 40.
    Gandhimathi C, Venugopal J, Ramakrishna S, Tay S, Kumar S. Biomimetic porous tetracycline loaded PLGA/Silk Fibroin/Ascorbic acid/n-HA hybrid scaffolds for adipose derived stem cells differentiation into osteogenic lineage (LB32). FASEB J. 2014;28(1), Supplement LB32.Google Scholar
  41. 41.
    Wang SD, Zhang YZ. Preparation, structure and in vitro degradation behavior of the electrospun poly(lactide-co-glycolide) ultrafine fibrous vascular scaffold. Fiber Polym. 2012;13(6):754–61.CrossRefGoogle Scholar
  42. 42.
    Vaz CM, van Tuijl S, Bouten CVC. Design of scaffolds for blood vessel tissue engineering using a multi-layering electrospinning technique. Acta Biomater. 2005;1:575–82.CrossRefGoogle Scholar
  43. 43.
    Wang CY, Zhang KH, Fan CY, Mo XM, Ruan HJ, Li FF. Aligned natural-synthetic polyblend nanofibers for peripheral nerve regeneration. Acta Biomater. 2011;7:634–43.CrossRefGoogle Scholar
  44. 44.
    Um IC, Kweon H, Park YH, Hudson S. Structural characteristics and properties of the regenerated silk fibroin prepared from formic acid. Int J Biol Macromol. 2001;29:91–7.CrossRefGoogle Scholar
  45. 45.
    Jin HJ, Kaplan DL. Mechanism of silk processing in insects and spiders. Nature. 2003;424:1057–61.CrossRefGoogle Scholar
  46. 46.
    Lu Q, Hu X, Wang X, Kluge JA, Lu S, Cebe P, Kaplan DL. Water-insoluble silk films with silk I structure. Acta Biomater. 2010;6:1380–7.CrossRefGoogle Scholar
  47. 47.
    Sell SA, McClure MJ, Barnes CP. Electrospun polydioxanone–elastin blends: potential for bioresorbable vascular grafts. Biomed Mater. 2006;1:72–80.CrossRefGoogle Scholar
  48. 48.
    Ertel SI, Ratner BD, Horbett TA. Radiofrequency plasma deposition of oxygen-containing films on polystyrene and poly(ethylene terephthalate) substrates improves endothelial cell growth. J Biomed Mater Res. 1990;24:1637–59.CrossRefGoogle Scholar
  49. 49.
    Wang YQ, Cai JY. Enhanced cell affinity of poly(l-lactic acid) modified by base hydrolysis: wettability and surface roughness at nanometer scale. Curr Appl Phys. 2007;7:e108–11.CrossRefGoogle Scholar
  50. 50.
    Lee JH, Lee SJ, Khang G, Lee HB. The effect of fluid shear stress on endothelial cell adhesiveness to polymer surfaces with wettability gradient. J Colloid Interface Sci. 2000;230:84–90.CrossRefGoogle Scholar
  51. 51.
    Wachem PV, Beugeling T, Feijen J, Bantjes A, Detmers JP, van Aken WG. Interaction of cultured human endothelial cells with polymeric surfaces of different wettabilities. Biomaterials. 1985;6:403–8.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Wei Zhou
    • 1
  • Yakai Feng
    • 1
    • 2
    • 3
    • 4
  • Jing Yang
    • 1
  • Jiaxu Fan
    • 1
  • Juan Lv
    • 1
  • Li Zhang
    • 2
  • Jintang Guo
    • 1
    • 2
  • Xiangkui Ren
    • 1
    • 2
  • Wencheng Zhang
    • 5
  1. 1.School of Chemical Engineering and TechnologyTianjin UniversityTianjinChina
  2. 2.Tianjin University - Helmholtz-Zentrum Geesthacht, Joint Laboratory for Biomaterials and Regenerative MedicineTianjinChina
  3. 3.Key Laboratory of Systems Bioengineering, Ministry of EducationTianjin UniversityTianjinChina
  4. 4.Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)TianjinChina
  5. 5.Department of Physiology and PathophysiologyLongistics University of Chinese People’s Armed Police ForceTianjinChina

Personalised recommendations