Skip to main content

Advertisement

Log in

Mechanical characterization of electrospun gelatin scaffolds cross-linked by glucose

  • Biomaterials Synthesis and Characterization
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Nanofibrous gelatin scaffolds were prepared by electrospinning from aqueous acetic acid and cross-linked thermally by glucose. The effect of the amount of glucose used as cross-linking agent on the mechanical properties of gelatin fibres was studied in this paper. The elastic modulus of gelatin fibres cross-linked by glucose was determined by modelling the behaviour of the meshes during tensile test. The model draws connections between the elastic moduli of a fibrous mesh and the fibre material and allows evaluation of elastic modulus of the fibre material. It was found that cross-linking by glucose increases the elastic modulus of gelatin fibres from 0.3 GPa at 0 % glucose content to 1.1 GPa at 15 % glucose content. This makes fibrous gelatin scaffolds cross-linked by glucose a promising material for biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ohan MP, Weadock KS, Dunn MG. Synergistic effects of glucose and ultraviolet irradiation on the physical properties of collagen. J Biomed Mater Res. 2002;60(3):384–91.

    Article  Google Scholar 

  2. Bunn HF, Higgins PJ. Reaction of monosaccharides with proteins: possible evolutionary significance. Science. 1981;213(4504):222–4.

    Article  Google Scholar 

  3. Angyal SJ. The composition of reducing sugars in solution. Adv Carbohydr Chem Biochem. 1984;42:15–68.

    Article  Google Scholar 

  4. Wang X, Ding B, Li B. Biomimetic electrospun nanofibrous structures for tissue engineering. Mater Today. 2013;16(6):229–41.

    Article  Google Scholar 

  5. Pham QP, Sharma U, Mikos AG. Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng. 2006;12(5):1197–211.

    Article  Google Scholar 

  6. Tamayol A, Akbari M, Annabi N, Paul A, Khademhosseini A, Juncker D. Fiber-based tissue engineering: progress, challenges, and opportunities. Biotechnol Adv. 2013;31:669–87.

    Article  Google Scholar 

  7. Raghavan P, Lim D-H, Ahn J-H, Nah C, Sherrington DC, Ryu H-S, Ahn H-J. Electrospun polymer nanofibers: the booming cutting edge technology. React Funct Polym. 2012;72:915–30.

    Article  Google Scholar 

  8. Huang Z-M, Zhang Y-Z, Kotaki M, Ramakrishna S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol. 2003;63:2223–53.

    Article  Google Scholar 

  9. Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126:677–89.

    Article  Google Scholar 

  10. Rao N, Grover GN, Vincent LG, Evans SC, Choi YS, Spencer KH, Hui EE, Englerac AJ, Christman KL. A co-culture device with a tunable stiffness to understand combinatorial cell–cell and cell–matrix interactions. Integr Biol. 2013;5(11):1344–54.

    Article  Google Scholar 

  11. Baji A, Mai Y-W, Wong S-C, Abtahi M, Chen P. Electrospinning of polymer nanofibers: effects on oriented morphology, structures and tensile properties. Compos Sci Technol. 2010;70:703–18.

    Article  Google Scholar 

  12. Tan EPS, Ng SY, Lim CT. Tensile testing of a single ultrafine polymeric fiber. Biomaterials. 2005;26:1453–6.

    Article  Google Scholar 

  13. McManus MC, Boland ED, Koo HP, Barnes CP, Pawlowski KJ, Wnek GE, Simpson DG, Bowlin GL. Mechanical properties of electrospun fibrinogen structures. Acta Biomater. 2006;2:19–28.

    Article  Google Scholar 

  14. Pedicini A, Farris RJ. Mechanical behavior of electrospun polyurethane. Polymer. 2003;44:6857–62.

    Article  Google Scholar 

  15. Strange DGT, Tonsomboon K, Oyen ML. Mechanical behaviour of electrospun fibre-reinforced hydrogels. J Mater Sci Mater Med. 2014;25(3):681–90.

    Article  Google Scholar 

  16. Bhardwaj N, Kundu SC. Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv. 2010;28:325–47.

    Article  Google Scholar 

  17. Tan EPS, Lim CT. Mechanical characterization of nanofibers—a review. Compos Sci Technol. 2006;66:1102–11.

    Article  Google Scholar 

  18. Syerko E, Comas-Cardona S, Binetruy C. Models of mechanical properties/behavior of dry fibrous materials at various scales in bending and tension: a review. Compos A. 2012;43:1365–88.

    Article  Google Scholar 

  19. Rizvi MS, Kumar P, Katti DS, Pal A. Mathematical model of mechanical behaviour of micro/nanofibrous materials designed for extracellular matrix substitutes. Acta Biomater. 2012;8:4111–22.

    Article  Google Scholar 

  20. Zhang YZ, Venugopal J, Huang Z-M, Lim CT, Ramakrishna S. Crosslinking of the electrospun gelatin nanofibers. Polymer. 2006;47:2911–7.

    Article  Google Scholar 

  21. Yang L, Fitié CFC, van der Werf KO, Bennink ML, Dijkstra PJ, Feijen J. Mechanical properties of single electrospun collagen type I fibers. Biomaterials. 2008;29:955–62.

    Article  Google Scholar 

  22. Yang L-J, Ou Y-C. The micro patterning of glutaraldehyde (GA)-crosslinked gelatin and its application to cell-culture. Lab Chip. 2005;5(9):979–84.

    Article  Google Scholar 

  23. Lien S-M, Ko L-Y, Huang T-J. Effect of crosslinking temperature on compression strength of gelatin scaffolds for articular cartilage tissue engineering. Mater Sci Eng C. 2010;30:631–5.

    Article  Google Scholar 

  24. Zhang X, Do MD, Casey P, Sulistio A, Qiao GG, Lundin L, Lillford P, Kosaraju S. Chemical cross-linking gelatin with natural phenolic compounds as studied by high-resolution NMR spectroscopy. Biomacromolecules. 2010;11(4):1125–32.

    Article  Google Scholar 

  25. Bertoni F, Barbani N, Giusti P, Ciardelli G. Transglutaminase reactivity with gelatine: perspective applications in tissue engineering. Biotechnol Lett. 2006;28(10):697–702.

    Article  Google Scholar 

  26. Gorgieva S, Kokol V. Collagen- vs. gelatin-based biomaterials and their biocompatibility: review and perspectives. In: Pignatello R, editors. Biomaterials applications for nanomedicine. Rijeka, Croatia: InTech; 2011. p. 17–52.

  27. Birshtein VY, Tul’chinskii VM. A study of gelatin by IR spectroscopy. Chem Nat Compd. 1982;18(6):697–700.

    Article  Google Scholar 

  28. Zhan J, Lan P. The review on electrospun gelatin fiber scaffold. J Res Updates Polym Sci. 2012;1:59–71.

    Google Scholar 

  29. Boekema BKHL, Vlig M, Damink LO, Middelkoop E, Eummelen L, Bühren AV, Ulrich MMW. Effect of pore size and cross-linking of a novel collagen-elastin dermal substitute on wound healing. J Mater Sci Mater Med. 2014;25(2):423–33.

    Article  Google Scholar 

  30. Gu X, Campbell LJ, Euston SR. Influence of sugars on the characteristics of glucono-δ-lactone-induced soy protein isolate gels. Food Hydrocoll. 2009;23:314–26.

    Article  Google Scholar 

  31. Rich LM, Foegeding EA. Effects of sugars on whey protein isolate gelation. J Agric Food Chem. 2000;48(10):5046–52.

    Article  Google Scholar 

  32. Cortesi R, Nastruzzi C, Davis SS. Sugar cross-linked gelatin for controlled release: microspheres and disks. Biomaterials. 1998;19(18):1641–9.

    Article  Google Scholar 

  33. Kozlov PV, Burdygina GI. The structure and properties of solid gelatin and the principles of their modification. Polymer. 1983;24(6):651–66.

    Article  Google Scholar 

  34. Song J-H, Kim H-E, Kim H-W. Production of electrospun gelatin nanofiber by water-based co-solvent approach. J Mater Sci Mater Med. 2008;19(1):95–102.

    Article  Google Scholar 

  35. Nguyen T-H, Lee B-T. Fabrication and characterization of cross-linked gelatin electro-spun nano-fibers. J Biomed Sci Eng. 2010;3:1117–24.

    Article  Google Scholar 

  36. Ibrahim M, Alaam M, El-Haes H, Jalbout AF, de Leon A. Analysis of the structure and vibrational spectra of glucose and fructose. Eclet Quim. 2006;31(3):15–21.

    Article  Google Scholar 

  37. Lin L-H, Chen K-M, Liu H-J, Chu H-C, Kuo T-C, Hwang M-C, Wang C-F. Preparation and surface activities of modified gelatin-glucose conjugates. Colloids Surf A: Physicochem Eng Asp. 2012;408:97–103.

    Article  Google Scholar 

  38. Zha Z, Teng W, Markle V, Dai Z, Wu X. Fabrication of gelatin nanofibrous scaffolds using ethanol/phosphate buffer saline as a benign solvent. Biopolymers. 2012;97(12):1026–36.

    Article  Google Scholar 

  39. Panzavolta S, Gioffre M, Focarete ML, Gualandi C, Foroni L. Electrospun gelatin nanofibers: optimization of genipin cross-linking to preserve fiber morphology after exposure to water. Acta Biomater. 2011;7:1702–9.

    Article  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the European Union through the European Regional Development Fund via projects “Carbon Nanotube Reinforced Electrospun Nano-fibres and Yarns” (3.2.1101.12-0018), “SmaCell” (3.2.1101.12-0017) and Centre of Excellence “Mesosystems: Theory and Applications” (3.2.0101.11-0029) and Estonian Science Foundation Grant IUT2-25.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaido Siimon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siimon, K., Siimon, H. & Järvekülg, M. Mechanical characterization of electrospun gelatin scaffolds cross-linked by glucose. J Mater Sci: Mater Med 26, 37 (2015). https://doi.org/10.1007/s10856-014-5375-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-014-5375-1

Keywords

Navigation