Dual effects of β-cyclodextrin-stabilised silver nanoparticles: enhanced biofilm inhibition and reduced cytotoxicity

  • Swarna Jaiswal
  • Kunal Bhattacharya
  • Patrick McHale
  • Brendan Duffy
Engineering and Nano-engineering Approaches for Medical Devices
Part of the following topical collections:
  1. Engineering and Nano-engineering Approaches for Medical Devices


The composition and mode of synthesis of nanoparticles (NPs) can affect interaction with bacterial and human cells differently. The present work describes the ability of β-cyclodextrin (β-CD) capped silver nanoparticles (AgNPs) to inhibit biofilm growth and reduce cytotoxicity. Biofilm formation of Staphylococcus epidermidis CSF 41498 was quantified by a crystal violet assay in the presence of native and capped AgNPs (Ag-10CD and Ag-20CD), and the morphology of the biofilm was observed by scanning electron microscope. The cytotoxicity of the AgNPs against HaCat cells was determined by measuring the increase in intracellular reactive oxygen species and change in mitochondrial membrane potential (ΔΨm). Results indicated that capping AgNPs with β-CD improved their efficacy against S. epidermidis CSF 41498, reduced biofilm formation and their cytotoxicity. The study concluded that β-CD is an effective capping and stabilising agent that reduces toxicity of AgNPs against the mammalian cell while enhancing their antibiofilm activity.


Reactive Oxygen Species Silver Nanoparticles Reactive Oxygen Species Generation Mitochondrial Membrane Potential HaCat Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to gratefully acknowledge Ms. Ashley Allen and Ms. Anne Shanahan for their technical assistance and Dublin Institute of Technology (Dublin, Ireland) for funding under the ABBEST scholarship and Fiosraigh research scholarship program.


  1. 1.
    Abbasi E, Milani M, Fekri Aval S, Kouhi M, Akbarzadeh A, Tayefi Nasrabadi H, Nikasa P, Joo SW, Hanifehpour Y, Nejati-Koshki K. Silver nanoparticles: synthesis methods, bio-applications and properties. Crit Rev Microbiol. 2004;0:1–8.Google Scholar
  2. 2.
    Maynard AD, Kuempel ED. Airborne nanostructured particles and occupational health. J Nanopart Res. 2005;7(6):587–614.CrossRefGoogle Scholar
  3. 3.
    AshaRani P, Low Kah Mun G, Hande MP, Valiyaveettil S. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano. 2008;3(2):279–90.CrossRefGoogle Scholar
  4. 4.
    Choi O, Yu C-P, Esteban Fernández G, Hu Z. Interactions of nanosilver with Escherichia coli cells in planktonic and biofilm cultures. Water Res. 2010;44(20):6095–103.CrossRefGoogle Scholar
  5. 5.
    Rhim J-W, Park H-M, Ha C-S. Bio-nanocomposites for food packaging applications. Prog Polym Sci. 2013;38(10):1629–52.CrossRefGoogle Scholar
  6. 6.
    Hebeish A, El-Naggar M, Fouda MM, Ramadan M, Al-Deyab SS, El-Rafie M. Highly effective antibacterial textiles containing green synthesized silver nanoparticles. Carbohydr Polym. 2011;86(2):936–40.CrossRefGoogle Scholar
  7. 7.
    Maillard J-Y, Hartemann P. Silver as an antimicrobial: facts and gaps in knowledge. Crit Rev Microbiol. 2013;39(4):373–83.CrossRefGoogle Scholar
  8. 8.
    Stobie N, Duffy B, McCormack DE, Colreavy J, Hidalgo M, McHale P, Hinder SJ. Prevention of Staphylococcus epidermidis biofilm formation using a low-temperature processed silver-doped phenyltriethoxysilane sol-gel coating. Biomaterials. 2008;29(8):963–9.CrossRefGoogle Scholar
  9. 9.
    Chairuangkitti P, Lawanprasert S, Roytrakul S, Aueviriyavit S, Phummiratch D, Kulthong K, Chanvorachote P, Maniratanachote R. Silver nanoparticles induce toxicity in A549 cells via ROS-dependent and ROS-independent pathways. Toxicol In Vitro. 2013;27(1):330–8.CrossRefGoogle Scholar
  10. 10.
    Grosse S, Evje L, Syversen T. Silver nanoparticle-induced cytotoxicity in rat brain endothelial cell culture. Toxicol In Vitro. 2013;27(1):305–13.CrossRefGoogle Scholar
  11. 11.
    Mohanty S, Mishra S, Jena P, Jacob B, Sarkar B, Sonawane A. An investigation on the antibacterial, cytotoxic, and antibiofilm efficacy of starch-stabilized silver nanoparticles. Nanomed: Nanotech Biol Med. 2012;8(6):916–24.Google Scholar
  12. 12.
    Abdelgawad AM, Hudson SM, Rojas OJ. Antimicrobial wound dressing nanofiber mats from multicomponent (chitosan/silver-NPs/polyvinyl alcohol) systems. Carbohydr Polym. 2014;100:166–78.CrossRefGoogle Scholar
  13. 13.
    Andrade PF, de Faria AF, da Silva DS, Bonacin JA, Gonçalves MDC. Structural and morphological investigations of β-cyclodextrin-coated silver nanoparticles. Colloids Surf B Biointerfaces. 2014;118:289–97.CrossRefGoogle Scholar
  14. 14.
    Singh S, Patel P, Jaiswal S, Prabhune A, Ramana C, Prasad B. A direct method for the preparation of glycolipid–metal nanoparticle conjugates: sophorolipids as reducing and capping agents for the synthesis of water re-dispersible silver nanoparticles and their antibacterial activity. New J Chem. 2009;33(3):646–52.CrossRefGoogle Scholar
  15. 15.
    Suresh AK, Pelletier DA, Wang W, Morrell-Falvey JL, Gu B, Doktycz MJ. Cytotoxicity induced by engineered silver nanocrystallites is dependent on surface coatings and cell types. Langmuir. 2012;28(5):2727–35.CrossRefGoogle Scholar
  16. 16.
    Loftsson T, Brewster ME. Cyclodextrins as functional excipients: methods to enhance complexation efficiency. J Pharm Sci. 2012;101(9):3019–32.CrossRefGoogle Scholar
  17. 17.
    Bazaka K, Jacob MV, Crawford RJ, Ivanova EP. Efficient surface modification of biomaterial to prevent biofilm formation and the attachment of microorganisms. Appl Microbiol Biotechnol. 2012;95(2):299–311.CrossRefGoogle Scholar
  18. 18.
    Jaiswal S, Duffy B, Jaiswal AK, Stobie N, McHale P. Enhancement of the antibacterial properties of silver nanoparticles using β-cyclodextrin as a capping agent. Int J Antimicrob Ag. 2010;36(3):280–3.CrossRefGoogle Scholar
  19. 19.
    Erriu M, Genta G, Tuveri E, Orrù G, Barbato G, Levi R. Microtiter spectrophotometric biofilm production assay analyzed with metrological methods and uncertainty evaluation. Measurement. 2012;45(5):1083–8.CrossRefGoogle Scholar
  20. 20.
    Mukherjee SG, O’Claonadh N, Casey A, Chambers G. Comparative in vitro cytotoxicity study of silver nanoparticle on two mammalian cell lines. Toxicol In Vitro. 2012;26(2):238–51.CrossRefGoogle Scholar
  21. 21.
    Rosado-Berrios CA, Vélez C, Zayas B. Mitochondrial permeability and toxicity of diethylhexyl and monoethylhexyl phthalates on TK6 human lymphoblasts cells. Toxicol In Vitro. 2011;25(8):2010–6.CrossRefGoogle Scholar
  22. 22.
    Bhattacharya K, Naha PC, Naydenova I, Mintova S, Byrne HJ. Reactive oxygen species mediated DNA damage in human lung alveolar epithelial (A549) cells from exposure to non-cytotoxic MFI-type zeolite nanoparticles. Toxicol Lett. 2012;215(3):151–60.CrossRefGoogle Scholar
  23. 23.
    Liao D, Wu G, Liao B. Zeta potential of shape-controlled TiO2 nanoparticles with surfactants. Colloids Surf A: Physicochem Eng Asp. 2009;348(1):270–5.CrossRefGoogle Scholar
  24. 24.
    Hebeish A, El-Shafei A, Sharaf S, Zaghloul S. Novel precursors for green synthesis and application of silver nanoparticles in the realm of cotton finishing. Carbohydr Polym. 2011;84(1):605–13.CrossRefGoogle Scholar
  25. 25.
    Abou-Okeil A, Amr A, Abdel-Mohdy F. Investigation of silver nanoparticles synthesis using aminated β-cyclodextrin. Carbohydr Polym. 2012;89(1):1–6.CrossRefGoogle Scholar
  26. 26.
    Ansari MA, Khan HM, Khan AA, Cameotra SS, Saquib Q, Musarrat J. Gum arabic capped-silver nanoparticles inhibit biofilm formation by multi-drug resistant strains of Pseudomonas aeruginosa. J Basic Microbiol. 2014;54:688–99.CrossRefGoogle Scholar
  27. 27.
    Kalishwaralal K, BarathManiKanth S, Pandian SRK, Deepak V, Gurunathan S. Silver nanoparticles impede the biofilm formation by Pseudomonas aeruginosa and Staphylococcus epidermidis. Colloids Surf B: Biointerfaces. 2010;79(2):340–4.CrossRefGoogle Scholar
  28. 28.
    Piao MJ, Kang KA, Lee IK, Kim HS, Kim S, Choi JY, Choi J, Hyun JW. Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis. Toxicol Lett. 2011;201(1):92–100.CrossRefGoogle Scholar
  29. 29.
    Wei D, Sun W, Qian W, Ye Y, Ma X. The synthesis of chitosan-based silver nanoparticles and their antibacterial activity. Carbohydr Res. 2009;344(17):2375–82.CrossRefGoogle Scholar
  30. 30.
    Solaini G, Sgarbi G, Lenaz G, Baracca A. Evaluating mitochondrial membrane potential in cells. Biosci Rep. 2007;27:11–21.CrossRefGoogle Scholar
  31. 31.
    Li P-W, Kuo T-H, Chang J-H, Yeh J-M, Chan W-H. Induction of cytotoxicity and apoptosis in mouse blastocysts by silver nanoparticles. Toxicol Lett. 2010;197(2):82–7.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Swarna Jaiswal
    • 1
    • 2
  • Kunal Bhattacharya
    • 3
    • 4
  • Patrick McHale
    • 1
  • Brendan Duffy
    • 2
  1. 1.School of Biological SciencesDublin Institute of TechnologyDublin 8Ireland
  2. 2.Centre for Research in Engineering Surface Technology (CREST), FOCAS InstituteDublin Institute of TechnologyDublin 8Ireland
  3. 3.Nanolab Research Centre, FOCAS InstituteDublin Institute of TechnologyDublinIreland
  4. 4.Institute of Environmental MedicineKarolinska InstituteStockholmSweden

Personalised recommendations