Osseointegration of bioactive microarc oxidized amorphous phase/TiO2 nanocrystals composited coatings on titanium after implantation into rabbit tibia

  • Rui Zhou
  • Daqing Wei
  • Haoyue Yang
  • Su Cheng
  • Wei Feng
  • Baoqiang Li
  • Yaming Wang
  • Dechang Jia
  • Yu Zhou


The amorphous phase/TiO2 nanocrystals (APTN) composited coatings were prepared on Ti implants for biomedical applications. The Ti implants without and with the APTN composited coatings both do not cause any adverse effects after implantation into the rabbit tibia. The osseointegration of Ti implants after covering the APTN coatings is improved pronouncedly, greatly increasing the interface bonding strength between the implants and newly formed bones. In addition, it is interesting that the newly formed bone tissues appear in the micro-pores of the APTN coatings, promoting the interface bonding between the implants and new bones by the mechanical interlock. Moreover, the Ti implant with the APTN coatings formed at higher applied voltage exhibit higher shear strength and displacement during the pushing out experiment probably due to its better osseointegration.


Shear Strength Bone Tissue Simulated Body Fluid Interface Bonding Bioactive Glass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was financially supported by National Basic Science Research Program (2012CB933900), National Natural Science Foundation of China (Grant No. 51002039 and 51021002), Fund for the Doctoral Project to new teachers, the Fundamental Research Funds for the Central Universities (Grant No. HIT.NSRIF.2014002).


  1. 1.
    Yerokhin AL, Nie X, Leyland A, Matthews A, Dowey SJ. Plasma electrolysis for surface engineering. Surf Coat Technol. 1999;122:73–93.CrossRefGoogle Scholar
  2. 2.
    Wei DQ, Zhou Y, Jia DC, Wang YM. Characteristic and in vitro bioactivity of a microarc-oxidized TiO2-based coating after chemical treatment. Acta Biomater. 2007;3:817–27.CrossRefGoogle Scholar
  3. 3.
    Wei DQ, Zhou Y, Jia DC, Wang YM. Effect of heat treatment on the structure and in vitro bioactivity of microarc-oxidized (MAO) titania coatings containing Ca and P ions. Surf Coat Technol. 2007;201:8723–9.CrossRefGoogle Scholar
  4. 4.
    Wei DQ, Zhou Y, Jia DC, Wang YM. Effect of applied voltage on the structure of microarc oxidized TiO2-based bioceramic films. Mater Chem Phys. 2007;104:177–82.CrossRefGoogle Scholar
  5. 5.
    Wei DQ, Zhou Y, Wang YM, Jia DC. Characteristic of microarc oxidized coatings on titanium alloy formed in electrolytes containing chelate complex and nano-HA. Appl Surf Sci. 2007;253:5045–50.CrossRefGoogle Scholar
  6. 6.
    Wei DQ, Zhou Y, Jia DC, Wang YM. Biomimetic apatite deposited on microarc oxidized anatase-based ceramic coating. Ceram Int. 2008;34:1139–44.CrossRefGoogle Scholar
  7. 7.
    Fini M, Cigad A, Rondelli G, Chies R, Giardino R, Giavaresi G, Aldini NN, Torricelli P, Vicentini B. In vitro and in vivo behaviour of Ca- and P-enriched anodized titanium. Biomaterials. 1999;20:1587–94.CrossRefGoogle Scholar
  8. 8.
    Zhu XL, Kim KH, Jeong YS. Anodic oxide films containing Ca and P of titanium biomaterial. Biomaterials. 2001;22:2199–206.CrossRefGoogle Scholar
  9. 9.
    Zhu XL, Ong JL, Kim SY, Kim KH. Surface characteristics and structure of anodic oxide films containing Ca and P on a titanium implant material. J Biomed Mater Res. 2002;60:333–8.CrossRefGoogle Scholar
  10. 10.
    Han Y, Hong SH, Xu KW. Structure and in vitro bioactivity of titania-based films by micro-arc oxidation. Surf Coat Technol. 2003;168:249–58.CrossRefGoogle Scholar
  11. 11.
    Frauchiger VM, Schlottig F, Gasser B, Textor M. Anodic plasma-chemical treatment of CP titanium surfaces for biomedical applications. Biomaterials. 2004;25:593–606.CrossRefGoogle Scholar
  12. 12.
    Li LH, Kong YM, Kim HW. Improved biological performance of Ti implants due to surface modification by micro-arc oxidation. Biomaterials. 2004;25:2867–75.CrossRefGoogle Scholar
  13. 13.
    Song WH, Jun YK, Han Y, Hong SH. Biomimetic apatite coatings on micro-arc oxidized titania. Biomaterials. 2004;25:3341–9.CrossRefGoogle Scholar
  14. 14.
    Cheng S, Wei DQ, Zhou Y. Structure of microarc oxidized coatings containing Si, Ca and Na on titanium and deposition of cefazolin sodium/chitosan composite film. Surf Coat Technol. 2011;205:3798–804.CrossRefGoogle Scholar
  15. 15.
    Zhou R, Wei DQ, Cheng S, Feng W, Li BQ, Wang YM, Jia DC, Zhou Y. MC3T3-E1 cells response of amorphous phase/TiO2 nanocrystals composite coating prepared by microarc oxidation on titanium. Mater Sci Eng C. Revised.Google Scholar
  16. 16.
    Cheng S, Wei DQ, Zhou Y, Guo HF. Preparation, cell response and apatite-forming ability of microarc oxidized coatings containing Si, Ca and Na on titanium. Ceram Int. 2011;37:2505–12.CrossRefGoogle Scholar
  17. 17.
    Liu XM, Wu SL, Yeung KWK, Chan YL, Hu T, Xu ZS, Liu XY, Chung JCY, Cheung KMC, Chu PK. Relationship between osseointegration and superelastic biomechanics in porous NiTi scaffolds. Biomaterials. 2011;32:330–8.CrossRefGoogle Scholar
  18. 18.
    Schouten C, Meijer GJ, van den Beucken JJJP, Spauwen PHM, Jansen JA. The quantitative assessment of peri-implant bone responses using histomorphometry and micro-computed tomography. Biomaterials. 2009;30:4539–49.CrossRefGoogle Scholar
  19. 19.
    Li Y, Lee IS, Cui FZ, Choi SH. The biocompatibility of nanostructured calcium phosphate coated on micro-arc oxidized titanium. Biomaterials. 2008;29:2025–32.CrossRefGoogle Scholar
  20. 20.
    Jinno T, Kirk SK, Morita S, Goldberg VM. Effects of calcium ion implantation on osseointegration of surface-blasted titanium alloy femoral implants in a canine total hip arthroplasty model. J Arthroplasty. 2004;19:102–9.CrossRefGoogle Scholar
  21. 21.
    Sul YT, Johansson CB, Röser K, Albrektsson T. Qualitative and quantitative observations of bone tissue reactions to anodised implants. Biomaterials. 2002;23:1809–17.CrossRefGoogle Scholar
  22. 22.
    Sul YT, Johansson CB, Jeong Y, Wennerberg A, Albrektsson T. Resonance frequency- and removal torque analysis of implants with turned and anodized surface oxides. Clin Oral Impl Res. 2002;13:252–9.CrossRefGoogle Scholar
  23. 23.
    Sul YT, Johansson CB, Kang YM, Jeon DG, Albrektsson T. Bone reactions to oxidized titanium implants with electrochemically anion S and P incorporation. Clin Implant Dent Relat Res. 2002;4:478–87.CrossRefGoogle Scholar
  24. 24.
    Ivanoff CJ, Widmark G, Johansson C, Wennerberg A. Histologic evaluation of bone response to oxidized and turned titanium micro-implants in human jawbone. Int J Oral Maxillofac Implant. 2003;18:341–8.Google Scholar
  25. 25.
    Rocci A, Martignoni M, Burgos PM, Gottlow J, Sennerby L. Histology of retrieved immediately and early loaded oxidized implants: light microscopic observations after 5–9 months of loading in the posterior mandible. Clin Implant Dent Relat Res. 2003;5(1):88–98.CrossRefGoogle Scholar
  26. 26.
    Son WW, Zhu X, Shin HI, Ong JL, Kim KH. In vivo histological response to anodized and anodized/hydrothermally treated titanium implants. J Biomed Mater Res. 2003;66:520–5.CrossRefGoogle Scholar
  27. 27.
    Li LH, Kong YM, Kim HW, Kim YW, Kim HE, Heo SJ, Koak JY. Improved biological performance of Ti implants due to surface modification by micro-arc oxidation. Biomaterials. 2004;25:2867–75.CrossRefGoogle Scholar
  28. 28.
    Sul YT, Johansson CB, Petronis S, Krozer A, Jeong Y, Wennerberg A, Albrektsson T. Characteristics of the surface oxides on turned and electrochemically oxidized pure titanium implants up to dielectric breakdown: the oxide thickness, micropore configurations, surface roughness, crystal structure and chemical composition. Biomaterials. 2002;23:491–501.CrossRefGoogle Scholar
  29. 29.
    Hayakawa S, Tsuru K, Ohtsuki C, Osaka A. Mechanism of apatite formation on a sodium silicate class in a simulated body fluid. J Am Ceram Soc. 1999;82:2155–60.CrossRefGoogle Scholar
  30. 30.
    Sul YT, Johansson C, Byon E, Albrektsson T. The bone response of oxidized bioactive and non-bioactive titanium implants. Biomaterials. 2005;26:6720–30.CrossRefGoogle Scholar
  31. 31.
    Svensson S, Suska F, Emanuelsson L, Palmquist A, Norlindh B, Trobos M, Bäckros H, Persson L, Rydja G, Ohrlander M, Lyvén B, Lausmaa J, Thomsen P. Osseointegration of titanium with an antimicrobial nanostructured noble metal coating. Nanomed-Nanotechnol. 2013;9:1048–56.CrossRefGoogle Scholar
  32. 32.
    Rubshtein AP, Trakhtenberg ISh, Makarova EB, Triphonova EB, Bliznets DG, Yakovenkova LI, Vladimirov AB. Porous material based on spongy titanium granules: structure, mechanical properties, and osseointegration. Mater Sci Eng, C. 2014;35:363–9.CrossRefGoogle Scholar
  33. 33.
    Elias CN, Meyers MA, Valiev RZ, Monteiro SN. Ultrafine grained titanium for biomedical applications: an overview of performance. J Mater Res Tech. 2013;2:340–50.CrossRefGoogle Scholar
  34. 34.
    Bryington MS, Hayashi M, Kozai Y, Vandeweghe S, Andersson M, Wennerberg A, Jimbo R. The influence of nano hydroxyapatite coating on osseointegration after extended healing periods. Dent Mater. 2013;29:514–20.CrossRefGoogle Scholar
  35. 35.
    Wang N, Li H, Lü W, Li J, Wang J, Zhang Z, Liu Y. Effects of TiO2 nanotubes with different diameters on gene expression and osseointegration of implants in minipigs. Biomaterials. 2011;32:6900–11.CrossRefGoogle Scholar
  36. 36.
    Laiblin C, Jaeschke G. Clinical chemistry examinations of bone and muscle metabolism under stress in the Gottingen miniature pig-an experimental study. Berl Munch Tierarztl Wochenschr. 1979;92:124–8.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Rui Zhou
    • 1
  • Daqing Wei
    • 1
  • Haoyue Yang
    • 1
  • Su Cheng
    • 2
  • Wei Feng
    • 1
  • Baoqiang Li
    • 1
  • Yaming Wang
    • 1
  • Dechang Jia
    • 1
  • Yu Zhou
    • 1
  1. 1.Department of Materials Science and EngineeringHarbin Institute of TechnologyHarbinPeople’s Republic of China
  2. 2.Department of Mechanical Engineering, School of Architecture and Civil EngineeringHarbin University of Science and TechnologyHarbinPeople’s Republic of China

Personalised recommendations