Advertisement

Poly(2-substituted-2-oxazoline) surfaces for dermal fibroblasts adhesion and detachment

  • Andrzej Dworak
  • Alicja Utrata-Wesołek
  • Natalia Oleszko
  • Wojciech Wałach
  • Barbara Trzebicka
  • Jacek Anioł
  • Aleksander L. Sieroń
  • Agnieszka Klama-Baryła
  • Marek Kawecki
Article

Abstract

The thermoresponsive surfaces of brush structure (linear polymer chains tethered on the surface) based on poly(2-isopropyl-2-oxazoline)s and copolymers of 2-ethyl-2-oxazoline and 2-nonyl-2-oxazoline were obtained using the grafting-to method. The living oxazoline (co)polymers have been synthesized by cationic ring-opening polymerization and subsequently terminated by the reactive amine groups present on the surface. The changes in the surface morphology, philicity and thickness occurring during surface modification were monitored via atomic force microscopy, contact angle and ellipsometry. The thickness of the (co)poly(2-substituted-2-oxazoline) layers ranged from 4 to 11 nm depending on the molar mass of immobilized polymer and reversibly varied with the temperature changes. This confirmed thermoresponsive properties of obtained surfaces. The obtained polymer surfaces were used as a support for dermal fibroblast culture and detachment. The fibroblasts’ adhesion and proliferation on the polymer surfaces were observed when the culture temperature was above the cloud point temperature of the immobilized polymer. Lowering the temperature resulted in the detachment of the dermal fibroblast sheets from the polymer layers, which makes these surfaces suitable for the treatment of wounds and in skin tissue engineering.

Keywords

Contact Angle Molar Mass Dermal Fibroblast Polymer Layer Cell Sheet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by the European Union, European Regional Development Fund, project “DERMOSTIM” UDA-POIG.01.03.01-00-088/08. Part of this work was supported by the National Science Centre, the decision DEC-2012/07/N/ST5/00261. N.O. gratefully acknowledges European Social Fund within the project “Scholarships for the development of Silesia” for financial support. The authors thank Dr. Liliana Szyk-Warszynska from the Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences for performing the ellipsometry measurements.

Conflict of interest

The authors declare no competing financial interest.

Supplementary material

10856_2013_5135_MOESM1_ESM.docx (241 kb)
Supplementary material 1 (DOCX 240 kb)

References

  1. 1.
    Yamada N, Okano T, Sakai H, Karikusa F, Sawasaki Y, Sakurai Y. Thermo-responsive polymeric surfaces; control of attachment and detachment of cultured cells. Macromol Rapid Commun. 1990;11:571–6.CrossRefGoogle Scholar
  2. 2.
    Elloumi-Hannachi I, Yamato M, Okano T. Cell sheet engineering: a unique nanotechnology for scaffold-free tissue reconstruction with clinical applications in regenerative medicine. J Intern Med. 2009;267:54–70.CrossRefGoogle Scholar
  3. 3.
    Kikuchi A, Okano T. Nanostructured designs of biomedical materials: applications of cell sheet engineering to functional regenerative tissues and organs. J Control Release. 2005;101:69–84.CrossRefGoogle Scholar
  4. 4.
    Nagase K, Kobayashi J, Okano T. Temperature-responsive intelligent interfaces for biomolecular separation and cell sheet engineering. J R Soc Interface. 2009;6:S293–309.CrossRefGoogle Scholar
  5. 5.
    Ebara M, Yamato M, Hirose M, Aoyagi T, Kikuchi A, Sakai K, Okano T. Copolymerization of 2-carboxyisopropylacrylamide with N-isopropylacrylamide accelerates cell detachment from grafted surfaces by reducing temperature. Biomacromolecules. 2003;4:344–9.CrossRefGoogle Scholar
  6. 6.
    Ebara M, Yamato M, Nagai S, Aoyagi T, Kikuchi A, Sakai K, Okano T. Incorporation of new carboxylate functionalized co-monomer to temperature-responsive polymer-grafted cell culture surfaces. Surf Sci. 2004;570:134–41.CrossRefGoogle Scholar
  7. 7.
    Tsuda Y, Kikuchi A, Yamato M, Nakao A, Sakurai Y, Umezu M, Okano T. The use of patterned dual thermoresponsive surfaces for the collective recovery as co-cultured cell sheets. Biomaterials. 2005;26:1885–93.CrossRefGoogle Scholar
  8. 8.
    Schmaljohann D, Oswald J, Jorgensen B, Nitschke M, Beyerlein D, Werner C. Thermo-responsive PNiPAAm-g-PEG films for controlled cell detachment. Biomacromolecules. 2003;4:1733–9.CrossRefGoogle Scholar
  9. 9.
    Nitschke N, Gramm S, Gotze T, Valtink M, Drichel J, Voit B, Engelmann K, Werner C. Thermo-responsive poly(NIPAAm-co-DEGMA) substrates for gentle harvest of human corneal endothelial cell sheets. J Biomed Mater Res A. 2007;80A:1003–10.CrossRefGoogle Scholar
  10. 10.
    Isenberg BC, Tsuda Y, Williams C, Shimizu T, Yamato M, Okano T, Wong JY. A thermoresponsive, microtextured substrate for cell sheet engineering with defined structural organization. Biomaterials. 2008;29:2565–72.CrossRefGoogle Scholar
  11. 11.
    Hatakeyama H, Kikuchi A, Yamato M, Okano T. Patterned bifunctional designs of thermoresponsive surfaces for spatiotemporally controlled cell adhesion, growth and thermally induced detachment. Biomaterials. 2007;28:3632–43.CrossRefGoogle Scholar
  12. 12.
    Mizutani A, Kikuchi A, Yamato M, Kanazawa H, Okano T. Preparation of thermoresponsive polymer brush surfaces and their interactions with cells. Biomaterials. 2008;29:2073–81.CrossRefGoogle Scholar
  13. 13.
    Takahashi H, Matsuzaka N, Nakayama M, Kikuchi A, Yamato M, Okano T. Terminally functionalized thermoresponsive polymer brushes for simultaneously promoting cell adhesion and cell sheet harvest. Biomacromolecules. 2012;13:253–60.CrossRefGoogle Scholar
  14. 14.
    Matsuda N, Shimizu T, Yamato M, Okano T. Tissue engineering based on cell sheet technology. Adv Mater. 2007;19:3089–99.CrossRefGoogle Scholar
  15. 15.
    Hatakeyama H, Kikuchi A, Yamato M, Okano T. Bio-functionalized thermoresponsive interfaces facilitating cell adhesion and proliferation. Biomaterials. 2006;27:5069–78.CrossRefGoogle Scholar
  16. 16.
    Wischerhoff E, Glatzel S, Uhlig K, Lankenau A, Lutz JF, Laschewsky A. Tuning the thickness of polymer brushes grafted from non-linearly growing multilayer assemblies. Langmuir. 2009;25:5949–56.CrossRefGoogle Scholar
  17. 17.
    Dworak A, Utrata-Wesołek A, Szweda D, Kowalczuk A, Trzebicka B, Anioł J, Sieroń AL, Klama-Baryła A, Kawecki M. Poly[tri(ethyleneglycol) ethyl ether methacrylate]-coated surfaces for controlled fibroblasts culturing. ACS Appl Mater Interfaces. 2013;5:2197–207.CrossRefGoogle Scholar
  18. 18.
    Wischerhoff E, Uhlig K, Lankenau A, Borner HG, Laschewsky A, Duschl C, Lutz JF. Controlled cell adhesion on PEG-based switchable surfaces. Angew Chem Int Edit. 2008;47:5666–8.CrossRefGoogle Scholar
  19. 19.
    de la Rosa V. Poly(2-oxazoline)s as materials for biomedical applications. J Mater Sci Mater Med. 2013;. doi: 10.1007/s10856-013-5034-y.Google Scholar
  20. 20.
    Luxenhofer R, Sahay G, Schulz A, Alakhova D, Bronich TK, Jordan R, Kabanov AV. Structure–property relationship in cytotoxicity and cell uptake of poly(2-oxazoline) amphiphiles. J Control Release. 2011;153:73–82.CrossRefGoogle Scholar
  21. 21.
    Kronek J, Kronekova Z, Luston J, Paulovicova E, Paulovicova L, Mendrek B. In vitro and cytotoxicity studies of poly(2-oxazolines). J Mater Sci Mater Med. 2011;22:1725–34.CrossRefGoogle Scholar
  22. 22.
    Luxenhofer R, Han Y, Schultz A, Tong J, He Z, Kabanov AV, Jordan R. Poly(oxazoline)s as polymer therapeutics. Macromol Rapid Commun. 2012;33:1613–31.CrossRefGoogle Scholar
  23. 23.
    Woodle MC, Engbers CM, Zalipsky S. New amphipatic polymer–lipid conjugates forming long-circulating reticuloendothelial system-evading liposomes. Bioconjugate Chem. 1994;5:493–6.CrossRefGoogle Scholar
  24. 24.
    Lee SC, Kim C, Kwon IC, Chung H, Jeong SY. Polymeric micelles of poly(2-ethyl-2-oxazoline)-block-poly(caprolactone) copolymer as a carrier for paclitaxel. J Control Release. 2003;89:437–46.CrossRefGoogle Scholar
  25. 25.
    Zhang N, Pompe T, Amin I, Luxenhofer R, Werner C, Jordan R. Tailored poly(2-oxazoline) polymer brushes to control protein adsorption and cell adhesion. Macromol Biosci. 2012;12:926–36.CrossRefGoogle Scholar
  26. 26.
    Aoi K, Suzuki H, Okada M. Architectural control of sugar-containing polymers by living polymerization: ring-opening polymerization of 2-oxazolines initiated with carbohydrate derivatives. Macromolecules. 1992;25:7073–5.CrossRefGoogle Scholar
  27. 27.
    Guillerm B, Monge S, Lapinte V, Robin JJ. How to modulate the chemical structure of polyoxazolines by appropriate functionalization. Macromol Rapid Commun. 2012;33:1600–12.CrossRefGoogle Scholar
  28. 28.
    Schlaad H, Diehl C, Gress A, Meyer M, Demirel A, Nur Y, Bertin A. Poly(oxazoline)s as smart bioinspired polymers. Macromol Rapid Commun. 2010;31:511–25.CrossRefGoogle Scholar
  29. 29.
    Makino A, Kobayashi S. Chemistry of 2-oxazolines: a crossing of cationic ring-opening polymerization and enzymatic ring-opening addition. J Polym Sci Pol Chem. 2010;48:1251–70.CrossRefGoogle Scholar
  30. 30.
    Dworak A, Trzebicka B, Wałach W. 2-oxazolines, polymerization. In: Salamone JC, editor. Polymeric materials encyclopedia. Boca Raton: CRC Press; 1996. p. 4842–52.Google Scholar
  31. 31.
    Agrawal M, Rueda JC, Uhlmann P, Muller M, Simon F, Stamm M. Facile approach to grafting of poly(2-oxazoline) brushes on macroscopic surfaces and applications. ACS Appl Mater Interfaces. 2012;4:1357–64.CrossRefGoogle Scholar
  32. 32.
    Lehmann T, Ruhe J. Polyethyloxazoline monolayers for polymer supported biomembrane models. Macromol Symp. 1999;142:1–12.CrossRefGoogle Scholar
  33. 33.
    Jordan R, Ulman A. Surface initiated living cationic polymerization of 2-oxazolines. J Am Chem Soc. 1998;120:243–7.CrossRefGoogle Scholar
  34. 34.
    Jordan J, West N, Ulman A, Chou YM, Nuyken O. Nanocomposites by surface-initiated living cationic polymerization of 2-oxazolines on functionalized gold nanoparticles. Macromolecules. 2001;34:1606–11.CrossRefGoogle Scholar
  35. 35.
    Hutter NA, Reitinger A, Garrido JA, Jordan R. Biofunctionalization of patterned poly(2-oxazoline) bottle-brush brushes on diamond. Polym Preprints. 2012;53:303–4.Google Scholar
  36. 36.
    Hutter NA, Steenackers M, Reitinger A, Williams OA, Garrido JA, Jordan R. Nanostructured polymer brushes and protein density gradients on diamond by carbon templating. Soft Matter. 2011;7:4861–7.CrossRefGoogle Scholar
  37. 37.
    Zhang N, Steenackers M, Luxenhofer R, Jordan R. Bottle-brush brushes: cylindrical molecular brushes of poly(2-oxazoline) on glassy carbon. Macromolecules. 2009;42:5345–51.CrossRefGoogle Scholar
  38. 38.
    Rehfeldt F, Tanaka M, Pagnoni L, Jordan R. Static and dynamic swelling of grafted poly(2-alkyl-2-oxazoline)s. Langmuir. 2002;18:4908–14.CrossRefGoogle Scholar
  39. 39.
    Loontjens T, Rique-Lurbet L. Synthesis of alkyl trimethoxysilane polyoxazolines and their application as coatings on glass fibres. Des Monomers Polym. 1999;2:217–29.CrossRefGoogle Scholar
  40. 40.
    Wang H, Li L, Tong Q, Yan M. Evaluation of photochemically immobilized poly(2-ethyl-2-oxazoline) thin films as protein-resistant surfaces. ACS Appl Mater Interfaces. 2011;3:3463–71.CrossRefGoogle Scholar
  41. 41.
    Jordan R, Graf K, Riegel H, Unger K. Polymer-supported alkyl monolayers on silica: synthesis and self-assembly of terminal functionalized poly(N-propionylethylenimine)s. Chem Commun. 1996;9:1025–6.CrossRefGoogle Scholar
  42. 42.
    Hutter NA, Reitinger A, Zhang N, Steenackers M, Williams OA, Garrido JA, Jordan R. Microstructured poly(2-oxazoline) bottle-brush brushes on nanocrystalline diamond. Phys Chem Chem Phys. 2010;12:4360–6.CrossRefGoogle Scholar
  43. 43.
    Witte H, Seeliger W. Cyclische imidsaureester aus nitrilern und aminoalkoholen. Liebigs Ann Chem. 1974;6:996–1009.CrossRefGoogle Scholar
  44. 44.
    Utrata-Wesołek A, Oleszko N, Trzebicka B, Anioł J, Zagdańska M, Lesiak M, Sieroń AL, Dworak A. Modified polyglycidol based nanolayers of switchable philicity and their interactions with skin cells. Eur Polym J. 2013;49:106–17.CrossRefGoogle Scholar
  45. 45.
    Hoogenboom R, Fijten MWM, Wijnans S, van den Berg AMJ, Thijs HML, Schubert US. High-throughput synthesis and screening of a library of random and gradient copoly(2-oxazoline)s. J Comb Chem. 2006;8:145–8.CrossRefGoogle Scholar
  46. 46.
    Christova D, Velichkova R, Loos W, Goethals EJ, Du Prez F. New thermo-responsive polymer materials based on poly(2-ethyl-2-oxazoline) segments. Polymer. 2003;44:2255–61.CrossRefGoogle Scholar
  47. 47.
    Howarter JA, Youngblood JP. Optimization of silica silanization by 3-aminopropyltriethoxysilane. Langumir. 2006;22:11142–7.CrossRefGoogle Scholar
  48. 48.
    Meyer M, Antonietti M, Schlaad H. Unexpected thermal characteristics of aqueous solutions of poly(2-isopropyl-2-oxazoline). Soft Matter. 2007;3:430–1.CrossRefGoogle Scholar
  49. 49.
    Demirel AL, Meyer M, Schlaad H. Formation of polyamide nanofibers by directional crystallization in aqueous solution. Angew Chem Int Ed. 2007;46:8622–4.CrossRefGoogle Scholar
  50. 50.
    Morimoto N, Obeid R, Yamane S, Winnik FM, Akiyoshi K. Composite nanomaterials by self-assembly and controlled crystallization of poly(2-isopropyl-2-oxazoline)-grafted polysaccharides. Soft Matter. 2009;5:1597–600.CrossRefGoogle Scholar
  51. 51.
    Diehl C, Dambrowsky I, Hoogenboom R, Schlaad H. Self-assembly of poly(2-alkyl-2-oxazoline)s by crystallization in ethanol–water mixtures below the upper critical solution temperature. Macromol Rapid Commun. 2011;32:1753–8.CrossRefGoogle Scholar
  52. 52.
    Hoeppener S, Wiesbrock F, Hoogenboom R, Thijs HML, Schubert US. Morphologies of spin-coated films of a library of diblock copoly(2-oxazoline)s and their correlation to the corresponding surface energies. Macromol Rapid Commun. 2006;27:405–11.CrossRefGoogle Scholar
  53. 53.
    Hoogenboom R, Fijten MWM, Paulus RM, Thijs HML, Hoeppener S, Kickelbick G, Schubert US. Accelerated pressure synthesis and characterization of 2-oxazoline block copolymers. Polymer. 2006;47:75–84.CrossRefGoogle Scholar
  54. 54.
    Plunkett KN, Zhu X, Moore JS, Leckband DE. PNIPAM chain collapse depends on the molecular weight and grafting density. Langmuir. 2006;22:4259–66.CrossRefGoogle Scholar
  55. 55.
    Kitano H, Kondo T, Suzuki H, Ohno K. Temperature-responsive polymer-brush constructed on a glass substrate by atom transfer radical polymerization. J Colloid Interface Sci. 2010;345:325–31.CrossRefGoogle Scholar
  56. 56.
    Montagne F, Polesel-Maris J, Pugin R, Heinzelmann H. Poly(N-isopropylacrylamide) thin films densley grafted onto gold surface: preparation, characterization, and dynamic AFM study of temperature-induced chain conformational changes. Langmuir. 2009;25:983–91.CrossRefGoogle Scholar
  57. 57.
    Girotto G, Fabbro C, Braghetta P, Vitale P, Volpin D, Bressan GM. Analysis of transcription of the Col6a1 gene in a specific set of tissues suggests a new variant of enhancer region. J Biol Chem. 2000;275:17381–90.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Andrzej Dworak
    • 1
  • Alicja Utrata-Wesołek
    • 1
  • Natalia Oleszko
    • 1
  • Wojciech Wałach
    • 1
  • Barbara Trzebicka
    • 1
  • Jacek Anioł
    • 2
  • Aleksander L. Sieroń
    • 2
  • Agnieszka Klama-Baryła
    • 3
  • Marek Kawecki
    • 3
  1. 1.Center of Polymer and Carbon MaterialsPolish Academy of SciencesZabrzePoland
  2. 2.Department of General, Molecular Biology and GeneticsMedical University of SilesiaKatowicePoland
  3. 3.Center for Burn TreatmentSiemianowice SlaskiePoland

Personalised recommendations