Advertisement

Novel mineralized heparin–gelatin nanoparticles for potential application in tissue engineering of bone

  • Yuan Yang
  • Haihao Tang
  • Alexander Köwitsch
  • Karsten Mäder
  • Gerd Hause
  • Joachim Ulrich
  • Thomas Groth
Article

Abstract

Nanoparticles (NPs) were prepared from succinylated gelatin (s-GL) cross-linked with aldehyde heparin (a-HEP) and used subsequently as a nano-template for the mineralization of hydroxyapatite (HAP). Gelatin was functionalized with succinyl groups that made it soluble at room temperature. Heparin was oxidized to generate aldehyde groups and then used as a cross-linker that can react with s-GL to form NPs via Schiff’s base linkage. The polymer concentrations, feed molar ratios and pH conditions were varied to fabricate NPs suspension. NPs were obtained with a spheroid shape of an average size of 196 nm at pH 2.5 and 202 nm at pH 7.4. These NPs had a positive zeta potential of 7.3 ± 3.0 mV and a narrow distribution with PDI 0.123 at pH 2.5, while they had a negative zeta potential of −2.6 ± 0.3 mV and formed aggregates (PDI 0.257) at pH 7.4. The NPs prepared at pH 2.5 with a mean particle size of 196 nm were further used for mineralization studies. The mineralization process was mediated by solution without calcination at 37 °C. The HAP formed on NPs was analyzed by Fourier transform infrared spectroscopy and X-ray diffraction. HAP coated s-GL/a-HEP NPs developed in this study may be used in future as osteoinductive fillers enhancing the mechanical properties of injectable hydrogel or use as potential multifunctional device for nanotherapeutic approaches.

Keywords

Gelatin Hyaluronic Acid Dynamic Light Scattering Aldehyde Group Genipin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We are very thankful to Dr. Hendrik Metz for zeta potential experiment, Mrs. Ute Mentzel for FFFF and DLS measurements and Ms. Kristin Wendt for XRD analysis. This work was supported by the European Union Seventh Framework Program (FP7/2007–2013) under Grant agreement no. NMP4-SL-2009-229292 (“Find and Bind”).

Supplementary material

10856_2013_5111_MOESM1_ESM.tif (600 kb)
Zeta-potential of s-GL at different pH conditions. At pH 4, the s-GL is nearly zero charged (TIFF 599 kb)

References

  1. 1.
    Ryu J, Kim SW, Kang K, Park CB. Mineralization of self-assembled peptide nanofibers for rechargeable lithium ion batteries. Adv Mater. 2010;22(48):5537–41. doi: 10.1002/adma.201000669.CrossRefGoogle Scholar
  2. 2.
    Scholler K, Ethirajan A, Zeller A, Landfester K. Biomimetic route to calcium phosphate coated polymeric nanoparticles: influence of different functional groups and pH. Macromol Chem Phys. 2011;212(11):1165–75. doi: 10.1002/macp.201100109.CrossRefGoogle Scholar
  3. 3.
    Zietz C, Bergschmidt P, Lange R, Mittelmeier W, Bader R. Third-body abrasive wear of tibial polyethylene inserts combined with metallic and ceramic femoral components in a knee simulator study. Int J Artif Organs. 2013;36(1):47–55. doi: 10.5301/ijao.5000189.CrossRefGoogle Scholar
  4. 4.
    Liu H, Li H, Cheng WJ, Yang Y, Zhu MY, Zhou CR. Novel injectable calcium phosphate/chitosan composites for bone substitute materials. Acta Biomater. 2006;2(5):557–65.CrossRefGoogle Scholar
  5. 5.
    Legeros RZ, Lin S, Rohanizadeh R, Mijares D, Legeros JP. Biphasic calcium phosphate bioceramics: preparation, properties and applications. J Mater Sci. 2003;14(3):201–9.Google Scholar
  6. 6.
    Li WM, Chen SY, Liu DM. In situ doxorubicin-CaP shell formation on amphiphilic gelatin-iron oxide core as a multifunctional drug delivery system with improved cytocompatibility, pH-responsive drug release and MR imaging. Acta Biomater. 2013;9(2):5360–8. doi: S1742-7061(12)00460-6.CrossRefGoogle Scholar
  7. 7.
    Azami M, Samadikuchaksaraei A, Poursamar SA. Synthesis and characterization of a laminated hydroxyapatite/gelatin nanocomposite scaffold with controlled pore structure for bone tissue engineering. Int J Artif Organs. 2010;33(2):86–95.Google Scholar
  8. 8.
    Boanini E, Bigi A. Biomimetic gelatin–octacalcium phosphate core-shell microspheres. J Colloid Interface Sci. 2011;362(2):594–9.CrossRefGoogle Scholar
  9. 9.
    Ethirajan A, Ziener U, Chuvilin A, Kaiser U, Colfen H, Landfester K. Biomimetic hydroxyapatite crystallization in gelatin nanoparticles synthesized using a miniemulsion process. Adv Funct Mater. 2008;18(15):2221–7.CrossRefGoogle Scholar
  10. 10.
    Nitta SK, Numata K. Biopolymer-based nanoparticles for drug/gene delivery and tissue engineering. Int J Mol Sci. 2013;14(1):1629–54.CrossRefGoogle Scholar
  11. 11.
    Kadengodlu PA, Aigaki T, Abe H, Ito Y. Cationic cholesterol-modified gelatin as an in vitro siRNA delivery vehicle. Mol Biosyst. 2013;9(5):965–8. doi: 10.1039/c2mb25424g.CrossRefGoogle Scholar
  12. 12.
    Tan GK, Tabata Y. Effect of gelatin microsphere size and cell/microsphere ratio on transforming growth factor-beta-3-induced chondrogenesis of human mesenchymal stem cells. J Tissue Eng Regen Med. 2012;6:67.CrossRefGoogle Scholar
  13. 13.
    Solorio LD, Vieregge EL, Dhami CD, Dang PN, Alsberg E. Engineered cartilage via self-assembled hMSC sheets with incorporated biodegradable gelatin microspheres releasing transforming growth factor-beta 1. J Controlled Release. 2012;158(2):224–32.CrossRefGoogle Scholar
  14. 14.
    Lee ES, Gao ZG, Bae YH. Recent progress in tumor pH targeting nanotechnology. J Controlled Release. 2008;132(3):164–70.CrossRefGoogle Scholar
  15. 15.
    Kawadkar J, Jain R, Kishore R, Pathak A, Chauhan MK. Formulation and evaluation of flurbiprofen-loaded genipin cross-linked gelatin microspheres for intra-articular delivery. J Drug Target. 2013;21(2):200–10. doi: 10.3109/1061186X.2012.745549.CrossRefGoogle Scholar
  16. 16.
    Guillame-Gentil O, Semenov O, Roca AS, Groth T, Zahn R, Voros J, et al. Engineering the extracellular environment: strategies for building 2D and 3D cellular structures. Adv Mater. 2010;22(48):5443–62. doi: 10.1002/adma.201001747.CrossRefGoogle Scholar
  17. 17.
    Hudalla GA, Murphy WL. Biomaterials that Regulate Growth Factor Activity via Bioinspired Interactions. Adv Funct Mater. 2011;21(10):1754–68.CrossRefGoogle Scholar
  18. 18.
    Lever R, Page CR. Novel drug development opportunities for heparin. Nat Rev Drug Discov. 2002;1(2):140–8.CrossRefGoogle Scholar
  19. 19.
    Raman K, Mencio C, Desai UR, Kuberan B. Sulfation patterns determine cellular internalization of heparin-like polysaccharides. Mol Pharm. 2013;. doi: 10.1021/mp300679a.Google Scholar
  20. 20.
    Kanzaki S, Ariyoshi W, Takahashi T, Okinaga T, Kaneuji T, Mitsugi S, et al. Dual effects of heparin on BMP-2-induced osteogenic activity in MC3T3-E1 cells. Pharmacol Rep. 2011;63(5):1222–30.CrossRefGoogle Scholar
  21. 21.
    Jeon O, Song SJ, Yang HS, Bhang SH, Kang SW, Sung MA, et al. Long-term delivery enhances in vivo osteogenic efficacy of bone morphogenetic protein-2 compared to short-term delivery. Biochem Biophys Res Commun. 2008;369(2):774–80.CrossRefGoogle Scholar
  22. 22.
    Liu ZM, Gu QY, Xu ZK, Groth T. Synergistic effect of polyelectrolyte multilayers and osteogenic growth medium on differentiation of human mesenchymal stem cells. Macromol Biosci. 2010;10(9):1043–54.CrossRefGoogle Scholar
  23. 23.
    Kisiel M, Martino MM, Ventura M, Hubbell JA, Hilborn J, Ossipov DA. Improving the osteogenic potential of BMP-2 with hyaluronic acid hydrogel modified with integrin-specific fibronectin fragment. Biomaterials. 2013;34(3):704–12.CrossRefGoogle Scholar
  24. 24.
    Kowitsch A, Yang Y, Ma N, Kuntsche J, Mader K, Groth T. Bioactivity of immobilized hyaluronic acid derivatives regarding protein adsorption and cell adhesion. Biotechnol Appl Biochem. 2011;58(5):376–89.CrossRefGoogle Scholar
  25. 25.
    Xiao JW, Zhu YC, Ruan QC, Liu YY, Zeng Y, Xu FF, et al. Biomacromolecule and surfactant complex matrix for oriented stack of 2-dimensional carbonated hydroxyapatite nanosheets as alignment in calcified tissues. Cryst Growth Des. 2010;10(4):1492–9.CrossRefGoogle Scholar
  26. 26.
    Jia XQ, Burdick JA, Kobler J, Clifton RJ, Rosowski JJ, Zeitels SM, et al. Synthesis and characterization of in situ cross-linkable hyaluronic acid-based hydrogels with potential application for vocal fold regeneration. Macromolecules. 2004;37(9):3239–48.CrossRefGoogle Scholar
  27. 27.
    Sashidhar RB, Capoor AK, Ramana D. Quantitation of epsilon-amino group using amino-acids as reference-standards by trinitrobenzene sulfonic-acid—a simple spectrophotometric method for the estimation of hapten to carrier protein ratio. J Immunol Methods. 1994;167(1–2):121–7.CrossRefGoogle Scholar
  28. 28.
    Croy SR, Kwon GS. The effects of Pluronic block copolymers on the aggregation state of nystatin. J Control Release. 2004;95(2):161–71.CrossRefGoogle Scholar
  29. 29.
    Ethirajan A, Schoeller K, Musyanovych A, Ziener U, Landfester K. Synthesis and optimization of gelatin nanoparticles using the miniemulsion process. Biomacromolecules. 2008;9(9):2383–9.CrossRefGoogle Scholar
  30. 30.
    Coester CJ, Langer K, van Briesen H, Kreuter J. Gelatin nanoparticles by two step desolvation—a new preparation method, surface modifications and cell uptake. J Microencapsul. 2000;17(2):187–93. doi: 10.1080/026520400288427.CrossRefGoogle Scholar
  31. 31.
    Kim DW, Cho IS, Kim JY, Jang HL, Han GS, Ryu HS, et al. Simple large-scale synthesis of hydroxyapatite nanoparticles. In situ observation of crystallization process. Langmuir. 2010;26(1):384–8.CrossRefGoogle Scholar
  32. 32.
    Habeeb AFS. Determination of free amino groups in proteins by trinitrobenzenesulfonic acid. Anal Biochem. 1966;14(3):328. doi: 10.1016/0003-2697(66)90275-2.CrossRefGoogle Scholar
  33. 33.
    Lu SY, Liu MZ, Ni BL. An injectable oxidized carboxymethylcellulose/N-succinyl-chitosan hydrogel system for protein delivery. Chem Eng J. 2010;160(2):779–87.CrossRefGoogle Scholar
  34. 34.
    Sui WP, Wang YH, Dong S, Chen YJ. Preparation and properties of an amphiphilic derivative of succinyl-chitosan. Colloids Surf A. 2008;316(1–3):171–5.CrossRefGoogle Scholar
  35. 35.
    Harada NS, Oyama HT, Bartoli JR, Gouvea D, Cestari IA, Wang SH. Quantifying adsorption of heparin on a PVC substrate using ATR-FTIR. Polym Int. 2005;54(1):209–14.CrossRefGoogle Scholar
  36. 36.
    Wang DA, Varghese S, Sharma B, Strehin I, Fermanian S, Gorham J, et al. Multifunctional chondroitin sulphate for cartilage tissue-biomaterial integration. Nat Mater. 2007;6(5):385–92.CrossRefGoogle Scholar
  37. 37.
    Kale R, Bajaj A. Ultraviolet spectrophotometric method for determination of gelatin crosslinking in the presence of amino groups. J Young Pharm. 2010;2(1):90–4. doi: 10.4103/0975-1483.62223.CrossRefGoogle Scholar
  38. 38.
    Bubnis WA, Ofner CM. The determination of epsilon-amino groups in soluble and poorly soluble proteinaceous materials by a spectrophotometric method using trinitrobenzenesulfonic acid. Anal Biochem. 1992;207(1):129–33.CrossRefGoogle Scholar
  39. 39.
    Farris S, Song J, Huang Q. Alternative reaction mechanism for the cross-linking of gelatin with glutaraldehyde. J Agric Food Chem. 2010;58(2):998–1003. doi: 10.1021/jf9031603.CrossRefGoogle Scholar
  40. 40.
    Griffiths PC, Fallis IA, Teerapornchaisit P, Grillo I. Hydrophobically modified gelatin and its interaction in aqueous solution with sodium dodecyl sulfate. Langmuir. 2001;17(9):2594–601.CrossRefGoogle Scholar
  41. 41.
    Dasgupta S, Banerjee SS, Bandyopadhyay A, Bose S. Zn- and Mg-doped hydroxyapatite nanoparticles for controlled release of protein. Langmuir. 2010;26(7):4958–64. doi: 10.1021/la903617e.CrossRefGoogle Scholar
  42. 42.
    Rehman I, Bonfield W. Characterization of hydroxyapatite and carbonated apatite by photo acoustic FTIR spectroscopy. J Mater Sci. 1997;8(1):1–4.Google Scholar
  43. 43.
    Wu HB, Chan MN, Chan CK. FTIR characterization of polymorphic transformation of ammonium nitrate. Aerosol Sci Technol. 2007;. doi: 10.1080/02786820701272038.Google Scholar
  44. 44.
    Chang MC, Tanaka J. FT-IR study for hydroxyapatite/collagen nanocomposite cross-linked by glutaraldehyde. Biomaterials. 2002;23(24):4811–8.CrossRefGoogle Scholar
  45. 45.
    LeGeros RZ. Calcium phosphates in oral biology and medicine. Monogr Oral Sci. 1991;15:1–201.Google Scholar
  46. 46.
    Rodriguez A, Eremin K, Khandekar N, Stenger J, Newman R, Bazeta F, et al. Characterization of calcium sulfate grounds and fillings of applied tin-relief brocades by Raman spectroscopy, Fourier transform infrared spectroscopy, and scanning electron microscopy. J Raman Spectrosc. 2010;41(11):1517–24.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Yuan Yang
    • 1
  • Haihao Tang
    • 1
  • Alexander Köwitsch
    • 1
  • Karsten Mäder
    • 2
  • Gerd Hause
    • 3
  • Joachim Ulrich
    • 4
  • Thomas Groth
    • 1
  1. 1.Biomedical Materials Group, Department of Pharmaceutical Technology and Biopharmacy, Institute of PharmacyMartin Luther University Halle-WittenbergHalle (Saale)Germany
  2. 2.Pharmaceutical Technology Group, Department of Pharmaceutical Technology and Biopharmacy, Institute of PharmacyMartin Luther University Halle-WittenbergHalle (Saale)Germany
  3. 3.Microscopy Unit, BiocenterMartin Luther University Halle-WittenbergHalle (Saale)Germany
  4. 4.Thermal Process Engineering, Center for Engineering ScienceMartin Luther University Halle-WittenbergHalle (Saale)Germany

Personalised recommendations