Bioactivation of calcium deficient hydroxyapatite with foamed gelatin gel. A new injectable self-setting bone analogue

  • M. Dessì
  • M. A. Alvarez-Perez
  • R. De Santis
  • M. P. Ginebra
  • J. A. Planell
  • L. Ambrosio


An alternative approach to bone repair for less invasive surgical techniques, involves the development of biomaterials directly injectable into the injury sites and able to replicate a spatially organized platform with features of bone tissue. Here, the preparation and characterization of an innovative injectable bone analogue made of calcium deficient hydroxyapatite and foamed gelatin is presented. The biopolymer features and the cement self-setting reaction were investigated by rheological analysis. The porous architecture, the evolution of surface morphology and the grains dimension were analyzed with electron microscopy (SEM/ESEM/TEM). The physico-chemical properties were characterized by X-ray diffraction and FTIR analysis. Moreover, an injection test was carried out to prove the positive effect of gelatin on the flow ensuing that cement is fully injectable. The cement mechanical properties are adequate to function as temporary substrate for bone tissue regeneration. Furthermore, MG63 cells and bone marrow-derived human mesenchymal stem cells (hMSCs) were able to migrate and proliferate inside the pores, and hMSCs differentiated to the osteoblastic phenotype. The results are paving the way for an injectable bone substitute with properties that mimic natural bone tissue allowing the successful use as bone filler for craniofacial and orthopedic reconstructions in regenerative medicine.


Foam Gelatin Osteogenic Differentiation Environmental Scan Electron Microscopy Extra Cellular Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study was financially supported by the SmartCap Project FP6-STREP NMP3-CT-2005-013912. The authors wish to thank Dr. M. Colella for his precious assistance with SEM and ESEM analysis, Dr. A. Scala for contact angle measurements and Dr. S. Zeppetelli for biological assistance.


  1. 1.
    Drumheller P, Hubbell J. The biomedical engineering handbook. Boca Raton: CRC Press LLC; 2000.Google Scholar
  2. 2.
    Kim HW, Song JH, et al. Nanofiber generation of gelatin-hydroxyapatite biomimetics for guided tissue regeneration. Adv Funct Mater. 2005;15:1988–94.CrossRefGoogle Scholar
  3. 3.
    Pasquier G, Flautre B, Blary MC, Anselme K, Hardouin P. Injectable percutaneous bone biomaterials: an experimental study in a rabbit model. J Mater Sci Mater Med. 1996;7:683–90.CrossRefGoogle Scholar
  4. 4.
    Guarino V, Causa F. Ambrosio L Bioactive scaffolds for bone and ligament tissue. Expert Rev Med Devices. 2007;3:405–18.CrossRefGoogle Scholar
  5. 5.
    Lewis G. Injectable bone cements for use in vertebroplasty and kyphoplasty: state of the art review. J Biomed Mater Res B. 2005;76:456–68.CrossRefGoogle Scholar
  6. 6.
    Ignjatovic N, Tomic S, Dakic M, Miljkovic M, Plavsic M, Uskokovic D. Synthesis and properties of hydroxyapatite/poly-l-lactide composite biomaterials. Biomaterials. 1999;20:809–16.CrossRefGoogle Scholar
  7. 7.
    Cerrai P, Guerra GD, Tricoli M, Krajewski A, Ravaglioli A, Martinetti R, Dolcini L, Fini M, Scarano A, Piattelli A. Periodontal membranes from composites of hydroxyapatite and bioresorbable block copolymers. J Mater Sci Mater Med. 1999;10:677–82.CrossRefGoogle Scholar
  8. 8.
    Zoulgami M, Lucas A, Briard P, Gaude J. A self-setting single-component calcium phosphate cement. Biomaterials. 2001;22:1933–7.CrossRefGoogle Scholar
  9. 9.
    Hyakuna K, Yamamuro T, Kotoura Y, et al. The influence of calcium phosphate ceramics and glass-ceramics on cultured cells and their surrounding media. J Biomed Mater Res. 1989;9:1049–66.CrossRefGoogle Scholar
  10. 10.
    Millot JM, Allam N, Manfait M. Study of the secondary structure of proteins in aqueous solutions by attenuated total reflection Fourier transform infrared spectrometry. Anal Chim Acta. 1994;295:233–41.CrossRefGoogle Scholar
  11. 11.
    Bigi B, Bracci B, Panzavolta S. Effect of added gelatin on the properties of calcium phosphate cement. Biomaterials. 2004;25:2893–9.CrossRefGoogle Scholar
  12. 12.
    Changa MC, DeLonga R. Calcium phosphate formation in gelatin matrix using free ion precursors of Ca2+ and phosphate ions. Dent Mater. 2009;25:261–8.CrossRefGoogle Scholar
  13. 13.
    Barbetta A, Dentini M, De Vecchis MS, Filippini P, Formisano G, Caiazza S. Scaffolds based on biopolymeric foams. Adv Funct Mater. 2005;75:118–24.CrossRefGoogle Scholar
  14. 14.
    Espanol M, Portillo J, Manero JM, Ginebra MP. Investigation of the hydroxyapatite obtained as hydrolysis product of α-tricalcium phosphate by transmission electron microscopy. CrystEngComm. 2010;12:3318–26.CrossRefGoogle Scholar
  15. 15.
    Xin X, Borzacchiello A, Netti PA, Ambrosio L, Nicolais L. Hyaluronic-acid-based semi-interpenetrating materials. J Biomater Sci. 2004;9:1223–36.CrossRefGoogle Scholar
  16. 16.
    Van Den Bulcke AI, Bogdanov B, De Rooze N, Schacht EH, Cornelissen M, Berghmans H. Structural and Rheological Properties of Methacrylamide Modified Gelatin Hydrogels. Biomacromolecules. 2000;1:31–8.CrossRefGoogle Scholar
  17. 17.
    Leone G, Barbucci R, Borzacchiello A, Ambrosio L, Netti PA, Migliaresi C. Preparation and physico-chemical characterization of microporous polysaccaridic hydrogels. J Mater Sci Mater Med. 2004;15:463–7.CrossRefGoogle Scholar
  18. 18.
    Xu LC, Siedlecki CA. Effects of surface wettability and contact time on protein adhesion to biomaterial surfaces. Biomaterials. 2007;28:3273–83.CrossRefGoogle Scholar
  19. 19.
    Tzoneva R, Faucheux N, Groth T. Wettability of substrata controls cell–substrate and cell–cell adhesions. Biochim Biophys Acta. 2007;1770:1538–47.CrossRefGoogle Scholar
  20. 20.
    Watanabe T. Wettability of ceramic surfaces-A wide range control of surface wettability from super hydrophilicity to super hydrophobicity, from static wettability to dynamic wettability. J Cer Soc Jpn. 2009;117:1285–92.CrossRefGoogle Scholar
  21. 21.
    Bigi A, Boanini E, Rubini K. Hydroxyapatite gels and nanocrystals prepared through a sol–gel process. J Solid State Chem. 2004;177:3092–8.CrossRefGoogle Scholar
  22. 22.
    Nociari M, Shalev A, Benias P, Russo C. A novel one-step, highly sensitive fluorometric assay to evaluate cell-mediated cytotoxicity. J Immunol Method. 1998;213:157–67.CrossRefGoogle Scholar
  23. 23.
    Goegan P, Johnson G, Vincent R. Effects of serum protein and colloid on the Alamar blue assay in cell cultures. Toxic Vim. 1995;9:257–66.Google Scholar
  24. 24.
    Betz MW, Modi PC, Caccamese JF, Coletti DP, Sauk JJ, Fisher JP. Cyclic acetal hydrogel system for bone marrow stromal cell encapsulation and osteodifferentiation. J Biomed Mater Res. 2008;86A:662–70.CrossRefGoogle Scholar
  25. 25.
    Moreau JL, Xu HHK. Mesenchymal stem cell proliferation and differentiation on an injectable calcium phosphate-chitosan composite scaffold. Biomaterials. 2009;30:2675–82.CrossRefGoogle Scholar
  26. 26.
    Martin R. Toward a unifying theory of bone remodeling. Bone. 2000;26:1–6.CrossRefGoogle Scholar
  27. 27.
    Nicholson PHF, Cheng X. G Lowet. Structural and material mechanical properties of human vertebral cancellous bone. Med Eng Phys. 1997;19:729–37.CrossRefGoogle Scholar
  28. 28.
    Lopes M, Monteiro F, Santos J, Serro A, Saramago B. Hydrophobicity, surface tension, and zeta potential measurements of glass-reinforced hydroxyapatite composites. J Biomed Mater Res. 1999;45:370–5.CrossRefGoogle Scholar
  29. 29.
    Navarro M, Engel E, Planell JA, Amaral I, Barbosa M, Ginebra MP. Surface characterization and cell response of a PLA/CaP glass biodegradable composite material. J Biomed Mater Res A. 2007;85:477–86.Google Scholar
  30. 30.
    Li Z, Yubao L, Xuejiang W, Jie W, Xuelin P. Studies on the porous scaffold made of the nano-HA composite. J Mater Sci. 2005;40:107–10.CrossRefGoogle Scholar
  31. 31.
    Chang MC, Kim UK, Douglas WH. Modification of Hydroxyapatite/Gelatin Nanocomposite Using Polyacrylamide. J Biomater Sci Polym Ed. 2009;20:363–75.CrossRefGoogle Scholar
  32. 32.
    Mirkin NG, Krimm S. Amide III Mode φ, ψ Dependence in Peptides: a Vibrational Frequency Map. J Phys Chem A. 2002;106:3391–4.CrossRefGoogle Scholar
  33. 33.
    Chang MC, Koa CC, Douglas WH. Conformational change of hydroxyapatite/gelatin nanocomposite by glutaraldehyde. Biomaterials. 2003;24:3087–94.CrossRefGoogle Scholar
  34. 34.
    Hashim DM, Che Man YB, Norakasha R, Shuhaimi M, Salmah Y, Syahariza ZA. Potential use of Fourier transform infrared spectroscopy for differentiation of bovine and porcine gelatins. Food Chem. 2010;118:856–60.CrossRefGoogle Scholar
  35. 35.
    Fischer G, Cao X, Cox N, Francis M. The FTIR spectra of glycine and glycylglycine zwitterions isolated in alkali halide matrices. J Chem Phys. 2005;313:39–49.Google Scholar
  36. 36.
    Siddharthan A, Seshadri SK, Sampath Kumar TS. Rapid synthesis of calcium deficient hydroxyapatite nanoparticles by microwave irradiation. Trends Biomater Artif Organs. 2005;18:110–4.Google Scholar
  37. 37.
    Siddharthan A, Sampath Kumar TS, Seshadri SK. Synthesis and characterization of nanocrystalline apatites from eggshells at different Ca/P ratios. Biomed Mater. 2009;39:439–68.Google Scholar
  38. 38.
    Almirall A, Larrecq G, Delgado JA, Martınez S, Planell JA, Ginebra MP. Fabrication of low temperature macroporous hydroxyapatite scaffolds by foaming and hydrolysis of an α-TCP paste. Biomaterials. 2004;25:3671–80.CrossRefGoogle Scholar
  39. 39.
    Liu Y, Hou D, Wang G. A simple wet chemical synthesis and characterization of hydroxyapatite nanorods. Mat Chem Phys. 2004;86:69–73.CrossRefGoogle Scholar
  40. 40.
    Causa F, Netti PA, Ambrosio L. A multi-functional scaffold for tissue regeneration: the need to engineer a tissue analogue. Biomaterials. 2007;28:5093–9.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • M. Dessì
    • 1
    • 4
  • M. A. Alvarez-Perez
    • 1
    • 5
  • R. De Santis
    • 1
  • M. P. Ginebra
    • 2
  • J. A. Planell
    • 2
    • 3
  • L. Ambrosio
    • 1
  1. 1.Institute of Composite and Biomedical MaterialsNational Research Council of ItalyNaplesItaly
  2. 2.Department of Materials Science and MetallurgyTechnical University of CataloniaBarcelonaSpain
  3. 3.Institute for Bioengineering of CataloniaBarcelonaSpain
  4. 4.School of Pharmacy & Biomolecular SciencesUniversity of BrightonBrightonUK
  5. 5.Faculty of DentistryNational Autonomous University of Mexico (UNAM)MexicoMexico

Personalised recommendations