Advertisement

Journal of Materials Science: Materials in Medicine

, Volume 24, Issue 12, pp 2787–2796 | Cite as

Evaluation of the in vitro biocompatibility of PMMA/high-load HA/carbon nanostructures bone cement formulations

  • Gil Gonçalves
  • María-Teresa Portolés
  • Cecilia Ramírez-Santillán
  • María Vallet-Regí
  • Ana Paula Serro
  • José Grácio
  • Paula A. A. P. Marques
Article

Abstract

Although commercially-available poly(methyl methacrylate) bone cement is widely used in total joint replacements, it has many shortcomings, a major one being that it does not osseointegrate with the contiguous structures. We report on the in vitro evaluation of the biocompatibility of modified formulations of the cement in which a high loading of hydroxyapatite (67 wt/wt%), an extra amount of benzoyl peroxide, and either 0.1 wt/wt% functionalized carbon nanotubes or 0.5 wt/wt% graphene oxide was added to the cement powder and an extra amount of dimethyl-p-toluidiene was added to the cement’s liquid monomer. This evaluation was done using mouse L929 fibroblasts and human Saos-2 osteoblasts. For each combination of cement formulation and cell type, there was high cell viability, low apoptosis, and extensive spread on disc surfaces. Thus, these two cement formulations may have potential for use in the clinical setting.

Keywords

Graphene Oxide PMMA Surface Free Energy Bone Cement Disc Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Gil Gonçalves thanks the Fundação para a Ciência e Tecnologia (FCT) for the PostDoc grant (SFRH/BDP/84419/2012). This study was co-financed by QREN, programme Mais Centro-Programa Operacional Regional do Centro and União Europeia/Fundo Europeu de Desenvolvimento Regional, project Biomaterials for Regenerative Medicine (CENTRO-07-ST24-FEDER-002030). This study was supported by research grants from Comunidad de Madrid (S2009/MAT-1472). The authors thank the staff of the Cytometry and Fluorescence Microscopy Centre at the Universidad Complutense de Madrid (Spain). Financial support by the CICYT, Spain (Project MAT2008-00736), and Comunidad Autónoma de Madrid, Spain (Project S2009/MAT-1472) is gratefully acknowledged.

References

  1. 1.
    Lewis G. Alternative acrylic bone cement formulations for cemented arthroplasties: present status, key issues, and future prospects. J Biomed Mater Res B Appl Biomater. 2008;84B:301–19.CrossRefGoogle Scholar
  2. 2.
    Bauer TW, Schils J. The pathology of total joint arthroplasty. Skelet Radiol. 1999;28:483–97.CrossRefGoogle Scholar
  3. 3.
    Barrack RL. Early failure of modern cemented stems. J Arthroplasty. 2000;15:1036–50.CrossRefGoogle Scholar
  4. 4.
    Sinnett-Jones PE, Browne M, Moffat AJ, Jeffers JRT, Saffari N, Buffiere JY, Sinclair I. Crack initiation processes in acrylic bone cement. J Biomed Mater Res A. 2009;89A:1088–97.CrossRefGoogle Scholar
  5. 5.
    Renteria-Zamarron D, Cortes-Hernandez DA, Bretado-Aragon L, Ortega-Lara W. Mechanical properties and apatite-forming ability of PMMA bone cements. Mater Des. 2009;30:3318–24.CrossRefGoogle Scholar
  6. 6.
    Lewis G. Properties of acrylic bone cement: state of the art review. J Biomed Mater Res Part B: Appl Biomater. 1997;38:155–82.CrossRefGoogle Scholar
  7. 7.
    Liu-Snyder P, Webster TJ. Developing a new generation of bone cements with nanotechnology. Curr Nanosci. 2008;4:111–8.CrossRefGoogle Scholar
  8. 8.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field effect in atomically thin carbon films. Science. 2004;306:666–9.CrossRefGoogle Scholar
  9. 9.
    Wei DC, Liu YQ. Controllable synthesis of graphene and its applications. Adv Mater. 2010;22:3225–41.CrossRefGoogle Scholar
  10. 10.
    Soldano C, Mahmood A, Dujardin E. Production, properties and potential of graphene. Carbon. 2010;48:2127–50.CrossRefGoogle Scholar
  11. 11.
    Compton OC, Nguyen ST. Graphene oxide, highly reduced grapheme oxide, and graphene: versatile building blocks for carbon-based materials. Small. 2010;6:711–23.CrossRefGoogle Scholar
  12. 12.
    Zanello LP, Zhao B, Hu H, Haddon RC. Bone cell proliferation on carbon nanotubes. Nano Lett. 2006;6:562–7.CrossRefGoogle Scholar
  13. 13.
    Lam CW, James JT, McCluskey R, Hunter RL. Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci. 2004;77:126–34.CrossRefGoogle Scholar
  14. 14.
    Zhang YB, Ali SF, Dervishi E, Xu Y, Li ZR, Casciano D, Biris AS. Cytotoxicity effects of graphene and single-wall carbon nanotubes in neural phaeochromocytoma-derived PC12 cells. ACS Nano. 2010;4:3181–6.CrossRefGoogle Scholar
  15. 15.
    Agarwal S, Zhou XZ, Ye F, He QY, Chen GCK, Soo J, Boey F, Zhang H, Chen P. Interfacing live cells with nanocarbon substrates. Langmuir. 2010;26:2244–7.CrossRefGoogle Scholar
  16. 16.
    Goncalves G, Cruz SMA, Ramalho A, Gracio J, Marques PAAP. Graphene oxide versus functionalized carbon nanotubes as a reinforcing agent in a PMMA/HA bone cement. Nanoscale. 2012;4:2937–45.CrossRefGoogle Scholar
  17. 17.
    Singh MK, Shokuhfar T, de Almeida Gracio JJ, de Mendes Sousa AC, Da Fonte Fereira JM, Garmestani H, Ahzi S. Hydroxyapatite modified with carbon-nanotube-reinforced poly(methyl methacrylate): a nanocomposite material for biomedical applications. Adv Funct Mater. 2008;18:694–700.CrossRefGoogle Scholar
  18. 18.
    Owens DK, Wendt RC. Estimation of the surface free energy of polymers. J Appl Polym Sci. 1969;13:1741–7.CrossRefGoogle Scholar
  19. 19.
    Dowling DP, Miller IS, Ardhaoui M, Gallagher WM. Effect of surface wettability and topography on the adhesion of osteosarcoma cells on plasma-modified polystyrene. J Biomater Appl. 2011;26:327–47.CrossRefGoogle Scholar
  20. 20.
    Rüttermann S, Trellenkamp T, Bergmann N, Raab WHM, Ritter H, Janda R. A new approach to influence contact angle and surface free energy of resin-based dental restorative materials. Acta Biomater. 2011;7:1160–5.CrossRefGoogle Scholar
  21. 21.
    Singh MK, Gracio J, LeDuc P, Goncalves PP, Marques PAAP, Goncalves G, Marques F, Silva VS, Capelae Silva F, Reis J, Potes J, Sousa A. Integrated biomimetic carbon nanotube composites for in vivo systems. Nanoscale. 2010;2:2855–63.CrossRefGoogle Scholar
  22. 22.
    Anselme K. Osteoblast adhesion on biomaterials. Biomaterials. 2000;21:667–81.CrossRefGoogle Scholar
  23. 23.
    Lai Y, Xie C, Zhang Z, Lu W, Ding J. Design and synthesis of a potent peptide containing both specific and non-specific cell-adhesion motifs. Biomaterials. 2010;31:4809–17.CrossRefGoogle Scholar
  24. 24.
    Cicuendez M, Izquierdo-Barba I, Portoles MT, Vallet-Regi M. Biocompatibility and levofloxacin delivery of mesoporous materials. Eur J Pharm Biopharm. 2013;84:115–24.CrossRefGoogle Scholar
  25. 25.
    Alcaide M, Serrano MC, Pagani R, Sanchez-Salcedo S, Nieto A, Vallet-Regi M, Portoles MT. L929 fibroblast and Saos-2 osteoblast response to hydroxyapatite-beta TCP/agarose biomaterial. J Biomed Mater Res A. 2009;89A:539–49.CrossRefGoogle Scholar
  26. 26.
    Alcaide M, Serrano M-C, Pagani R, Sanchez-Salcedo S, Vallet-Regi M, Portoles MT. Biocompatibility markers for the study of interactions between osteoblasts and composite biomaterials. Biomaterials. 2009;30:45–51.CrossRefGoogle Scholar
  27. 27.
    Hench LL. Bioceramics–from concept to clinic. J Am Ceram Soc. 1991;74:1487–510.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Gil Gonçalves
    • 1
  • María-Teresa Portolés
    • 2
  • Cecilia Ramírez-Santillán
    • 2
  • María Vallet-Regí
    • 3
    • 4
  • Ana Paula Serro
    • 5
    • 6
  • José Grácio
    • 1
  • Paula A. A. P. Marques
    • 1
  1. 1.TEMA – NRD, Mechanical Engineering Department and Aveiro Institute of Nanotechnology (AIN)University of AveiroAveiroPortugal
  2. 2.Department of Biochemistry and Molecular Biology I, Faculty of ChemistryUniversidad ComplutenseMadridSpain
  3. 3.Departamento de Química Inorgánica y Bioinorgánica, Facultad de FarmaciaUniversidad Complutense de MadridMadridSpain
  4. 4.Networking Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER-BBN)MadridSpain
  5. 5.Centro de Química Estrutural, Instituto Superior TécnicoUniversidade Técnica de LisboaLisbonPortugal
  6. 6.Centro de Investigação Interdisciplinar Egas MonizInstituto Superior de Ciências da Saúde Egas MonizCaparicaPortugal

Personalised recommendations