Journal of Materials Science: Materials in Medicine

, Volume 24, Issue 9, pp 2157–2169 | Cite as

Skin vasodilation and analgesic effect of a topical nitric oxide-releasing hydrogel

  • Rafael Vercelino
  • Thiago Mattar Cunha
  • Elisa Silva Ferreira
  • Fernando Q. Cunha
  • Sérgio H. Ferreira
  • Marcelo G. de Oliveira


New approaches based on topical treatments are needed for treating pain and impaired dermal blood flow. We used a topical Pluronic F127 hydrogel containing S-nitrosoglutathione (GSNO) as a prodrug to generate free NO, an effector molecule that exerts both dermal vasodilation and antinociceptive effects. GSNO-containing hydrogels underwent gelation above 12 °C and released free NO at rates that were directly dependent on the GSNO concentration in the range of 50–150 mM. The topical application of this material led to dose–response dermal vasodilation in healthy volunteers and to a reduction of up to 50 % of the hypernociception intensity in Wistar rats that were subjected to inflammatory pain. Mechanistic investigations indicated that the antinociceptive effect of the topical F127/GSNO hydrogels is produced by the local activation of the cGMP/PKG/KATP channel-signaling pathway, which was stimulated by the free NO that diffused through the skin. These results expand the scope of the biomedical applications of this material and may represent a new approach for the topical treatment of inflammatory pain.


Nitric Oxide Stratum Corneum KATP Channel Antinociceptive Effect GSNO 



R.V. was supported by a Fundação de Amparo à Pesquisa do Estado de São Paulo, FAPESP, postdoctoral fellowship (#2009/09800-4). E.S.F. received a FAPESP research trainee studentship (#2009/17235-5). This work was supported by grants from Conselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq (#309390/2011-7 and #482646/2010-1). We thank Dr. Ieda Regina Schivo for technical assistance with animal husbandry and laboratory protocols, Mr. Natan V. de Castro for technical assistance with the HSDSC measurements and Mr. Iveraldo Rodrigues for technical assistance with the figures.

Supplementary material

10856_2013_4973_MOESM1_ESM.pdf (2.8 mb)
Supplementary material 1 (PDF 2825 kb)


  1. 1.
    Jorge LL, Feres CC, Teles VE. Topical preparations for pain relief: efficacy and patient adherence. J Pain Res. 2011;4:11–24.Google Scholar
  2. 2.
    Prausnitz MR, Mitragotri S, Langer R. Current status and future potential of transdermal drug delivery. Nat Rev Drug Discov. 2004;3:115–24.CrossRefGoogle Scholar
  3. 3.
    Brown MB, Martin GP, Jones SA, Akomeah FK. Dermal and transdermal drug delivery systems: current and future prospects. Drug Deliv. 2006;13:175–87.CrossRefGoogle Scholar
  4. 4.
    Makris UE, Kohler MJ, Fraenkel L. Adverse effects of topical nonsteroidal antiinflammatory drugs in older adults with osteoarthritis: a systematic literature review. J Rheumatol. 2010;37:1236–43.CrossRefGoogle Scholar
  5. 5.
    Tadicherla S, Berman B. Percutaneous dermal drug delivery for local pain control. Ther Clin Risk Manag. 2006;2:99–113.Google Scholar
  6. 6.
    Friedman DI, Schwarz JS, Weisspapir M. Submicron emulsion vehicle for enhanced transdermal delivery of steroidal and nonsteroidal antiinflammatory drugs. J Pharm Sci. 1995;84:324–9.CrossRefGoogle Scholar
  7. 7.
    Durate ID, Lorenzetti BB, Ferreira SH. Peripheral analgesia and activation of the nitric oxide-cyclic GMP pathway. Eur J Pharmacol. 1990;186:289–93.CrossRefGoogle Scholar
  8. 8.
    Miclescu A, Gordh T. Nitric oxide and pain: ‘something old, something new’. Acta Anaesthesiol Scand. 2009;53:1107–20.CrossRefGoogle Scholar
  9. 9.
    Cunha TM, Roman-Campos D, Lotufo CM, Duarte HL, Souza GR, Verri WA, et al. Morphine peripheral analgesia depends on activation of the PI3Kgamma/AKT/nNOS/NO/KATP signaling pathway. Proc Natl Acad Sci USA. 2010;107:4442–7.CrossRefGoogle Scholar
  10. 10.
    Möller M, Botti H, Batthyany C, Rubbo H, Radi R, Denicola A. Direct measurement of nitric oxide and oxygen partitioning into liposomes and low density lipoprotein. J Biol Chem. 2005;280:8850–4.CrossRefGoogle Scholar
  11. 11.
    Zacharia IG, Deen WM. Diffusivity and solubility of nitric oxide in water and saline. Ann Biomed Eng. 2005;33:214–22.CrossRefGoogle Scholar
  12. 12.
    Prado WA, Schiavon VF, Cunha FQ. Dual effect of local application of nitric oxide donors in a model of incision pain in rats. Eur J Pharmacol. 2002;441:57–65.CrossRefGoogle Scholar
  13. 13.
    Groeneweg G, Niehof S, Wesseldijk F, Huygen FJ, Zijlstra FJ. Vasodilative effect of isosorbide dinitrate ointment in complex regional pain syndrome type 1. Clin J Pain. 2008;24:89–92.CrossRefGoogle Scholar
  14. 14.
    Yuen KC, Baker NR, Rayman G. Treatment of chronic painful diabetic neuropathy with isosorbide dinitrate spray: a double-blind placebo-controlled cross-over study. Diabetes Care. 2002;25:1699–703.CrossRefGoogle Scholar
  15. 15.
    Paoloni JA, Appleyard RC, Nelson J, Murrell GAC. Topical glyceryl trinitrate application in the treatment of chronic supraspinatus tendinopathy. A randomized, double-blinded, placebo-controlled clinical trial. Am J Sports Med. 2005;33:806–13.CrossRefGoogle Scholar
  16. 16.
    Cross T, Bartlett L, Mushaya C, Ashour M, Ho YH. Glyceryl trinitrate ointment did not reduce pain after stapled hemorrhoidectomy: a randomized controlled trial. Int Surg. 2012;97:112–9.CrossRefGoogle Scholar
  17. 17.
    Fidecka S, Lalewicz S. Studies on the antinociceptive effects of sodium nitroprusside and molsidomine in mice. Pol J Pharmacol. 1997;49:395–400.Google Scholar
  18. 18.
    Shishido SM, de Oliveira MG. Photosensitivity of aqueous sodium nitroprusside solutions: nitric oxide release versus cyanide toxicity. Prog React Kinet Mech. 2001;26:239–61.CrossRefGoogle Scholar
  19. 19.
    Wanka G, Hoffmann H, Ulbricht W. Phase-diagrams and aggregation behavior of poly(oxyethylene)-poly(oxypropylene)-poly(oxyethylene) triblock copolymers in aqueous-solutions. Macromolecules. 1994;27:4145–59.CrossRefGoogle Scholar
  20. 20.
    Deng Y, Yu G, Price C, Booth C. Thermodynamics of micellization and gelation of oxyethylene oxypropylene diblock copolymers in aqueous-solution studied by light-scattering and differential scanning calorimetry. J Chem Soc Faraday Trans. 1992;88:1441–6.CrossRefGoogle Scholar
  21. 21.
    Shishido SM, Seabra AB, Loh W, de Oliveira MG. Thermal and photochemical nitric oxide release from S-nitrosothiols incorporated in Pluronic F127 gel: potential uses for local and controlled nitric oxide release. Biomaterials. 2003;24:3543–53.CrossRefGoogle Scholar
  22. 22.
    Seabra AB, Fitzpatrick A, Paul J, de Oliveira MG, Weller R. Topically applied S-nitrosothiol-containing hydrogels as experimental and pharmacological nitric oxide donors in human skin. Br J Dermatol. 2004;5:977–83.CrossRefGoogle Scholar
  23. 23.
    Seabra AB, Pankotai E, Fehér M, Somlai Á, Kiss L, Bíró L, Szabó C, Kollai M, de Oliveira MG, Lacza Z. S-nitrosoglutathione-containing hydrogel increases dermal blood flow in streptozotocin-induced diabetic rats. Br J Dermatol. 2007;156:814–8.CrossRefGoogle Scholar
  24. 24.
    Souto S, Palma PCR, Riccetto CLZ, Seabra AB, de Oliveira MG, Palma T, Capmartin R. Impact of topical administration of nitric oxide donor gel in the clitoridian blood flow, assessed by Doppler ultra-sound. Actas Urol Esp. 2010;34:708–12.CrossRefGoogle Scholar
  25. 25.
    Simões MMSG, de Oliveira MG. Poly(vinyl alcohol) films for topical delivery of S-nitrosoglutathione: effect of freezing-thawing on the diffusion properties. J Biomed Mat Res B Appl Biomater. 2010;93B:416–24.CrossRefGoogle Scholar
  26. 26.
    Amadeu TP, Seabra AB, de Oliveira MG, Costa AM. S-nitrosoglutathione-containing hydrogel accelerates rat cutaneous wound repair. J Eur Acad Dermatol Venereol. 2007;21:629–37.Google Scholar
  27. 27.
    Amadeu TP, Seabra AB, de Oliveira MG, Monte-Alto-Costa A. Nitric oxide donor improves healing if applied on inflammatory and proliferative phase. J Surg Res. 2008;149:84–93.CrossRefGoogle Scholar
  28. 28.
    Georgii JL, Amadeu TP, Seabra AB, de Oliveira MG, Monte-Alto-Costa A. Topical S-nitrosoglutathione-releasing hydrogel improves healing of rat ischemic wounds. J Tissue Eng Regen Med. 2011;5:612–9.CrossRefGoogle Scholar
  29. 29.
    Lipke EA, West JL. Localized delivery of nitric oxide from hydrogels inhibits neointima formation in a rat carotid balloon injury model. Acta Biomater. 2005;1:597–606.CrossRefGoogle Scholar
  30. 30.
    Taite LJ, West J. Sustained delivery of nitric oxide from poly(ethylene glycol) hydrogels enhances endothelialization in a rat carotid balloon injury model. Cardiovasc Eng Technol. 2011;2:113–23.CrossRefGoogle Scholar
  31. 31.
    Masters KSB, Leibovich SJ, Belem P, West JL, Poole-Warren LA. Effects of nitric oxide releasing poly(vinyl alcohol) hydrogel dressings on dermal wound healing in diabetic mice. Wound Repair Regen. 2002;10:286–94.CrossRefGoogle Scholar
  32. 32.
    Kim J, Lee Y, Singha K, Kim HW, Shin JH, Jo S, Han DK, Kim WJ. NONOates-polyethylenimine hydrogel for controlled nitric oxide release and cell proliferation modulation. Bioconjug Chem. 2011;22:1031–8.CrossRefGoogle Scholar
  33. 33.
    Yoncheva K, Doytchinova I, Tankova L. Preparation and evaluation of isosorbide mononitrate hydrogels for topical fissure treatment. Curr Drug Deliv. 2012;9:452–8.CrossRefGoogle Scholar
  34. 34.
    Dave RN, Joshi HM, Venugopalan VP. Biomedical evaluation of a novel nitrogen oxides releasing wound dressing. J Mater Sci Mater Med. 2012;23:3097–106.CrossRefGoogle Scholar
  35. 35.
    Randall L, Selitto J. A method for measurement of analgesic activity on inflamed tissue. Arch Int Pharmacodyn Ther. 1957;111:409–19.Google Scholar
  36. 36.
    Ferreira S, Lorenzetti B, Corrêa F. Central and peripheral antialgesic action of aspirin-like drugs. Eur J Pharmacol. 1978;53:39–48.CrossRefGoogle Scholar
  37. 37.
    Lambers H, Piessens S, Bloem A, Pronk H, Finkel P. Natural skin surface pH is on average below 5, which is beneficial for its resident flora. Int J Cosmet Sci. 2006;28:359–70.CrossRefGoogle Scholar
  38. 38.
    Briñas RP, Hu M, Qian L, Lymar ES, Hainfeld JF. Gold nanoparticle size controlled by polymeric Au(I) thiolate precursor size. J Am Chem Soc. 2008;130:975–82.CrossRefGoogle Scholar
  39. 39.
    Jiang L, Zheng Y, Zhao J. Effect of phenol on micellization of Pluronic block copolymer F127 and solubilization of anthracene in the micelle. Fine Chem. 2001;18:731–5.Google Scholar
  40. 40.
    Alexandridis P, Athanassiou V, Hatton TA. Pluronic-P105 PEO–PPO–PEO block copolymer in aqueous urea solutions: micelle formation, structure, and microenvironment. Langmuir. 1995;11:2442–50.CrossRefGoogle Scholar
  41. 41.
    Beezer A, Loh W, Mitchell JC, Royall PG, Smith DO, Tute MS, et al. An investigation of dilute aqueous-solution behavior of poly(oxyethylene) plus poly(oxypropylene) plus poly(oxyethylene) block-copolymers. Langmuir. 1994;10:4001–5.CrossRefGoogle Scholar
  42. 42.
    Florin E, Kjellander R, Eriksson JC. Salt effects on the cloud point of the poly(ethylene oxide) + water system. J Chem Soc Faraday Trans. 1984;80:2889–910.CrossRefGoogle Scholar
  43. 43.
    de Oliveira MG, Shishido SM, Seabra AB, Morgon NH. Thermal stability of primary s-nitrosothiols: roles of autocatalysis and structural effects on the rate of nitric oxide release. J Phys Chem A. 2002;106:8963–70.CrossRefGoogle Scholar
  44. 44.
    Malinski T, Taha Z, Grunfeld S, Patton S, Kapturczak M, Tomboulian P. Diffusion of nitric-oxide in the aorta wall monitored in situ by porphyrinic microsensors. Biochem Biophys Res Commun. 1993;193:1076–82.CrossRefGoogle Scholar
  45. 45.
    Sachs D, Cunha FQ, Ferreira SH. Peripheral analgesic blockade of hypernociception: activation of arginine/NO/cGMP/protein kinase G/ATP-sensitive K+ channel pathway. Proc Natl Acad Sci USA. 2004;101:3680–5.CrossRefGoogle Scholar
  46. 46.
    Vivancos GG, Parada CA, Ferreira SH. Opposite nociceptive effects of the arginine/NO/cGMP pathway stimulation in dermal and subcutaneous tissues. Br J Pharmacol. 2003;138:1351–7.CrossRefGoogle Scholar
  47. 47.
    Cunha FQ, Teixeira MM, Ferreira SH. Pharmacological modulation of secondary mediator systems—cyclic AMP and cyclic GMP—on inflammatory hyperalgesia. Br J Pharmacol. 1999;127:671–8.CrossRefGoogle Scholar
  48. 48.
    Cury Y, Picolo G, Gutierrez VP, Ferreira SH. Pain and analgesia: the dual effect of nitric oxide in the nociceptive system. Nitric Oxide. 2011;25:243–54.CrossRefGoogle Scholar
  49. 49.
    Kawano T, Zoga V, Kimura M, Liang MY, Wu HE, Gemes G, et al. Nitric oxide activates ATP-sensitive potassium channels in mammalian sensory neurons: action by direct S-nitrosylation. Mol Pain. 2009;5:12.CrossRefGoogle Scholar
  50. 50.
    Ferreira SH, Prado WA, Ferrari LF. Potassium and calcium channels in pain pharmacology. In: Beaulieu P, Lussier, D, Porreca D, Dickenson AH. (Org.). Pharmacology of pain. Seattle: IASP Press; 2010. pp. 163–164.Google Scholar
  51. 51.
    Rodrigues AR, Duarte ID. The peripheral antinociceptive effect induced by morphine is associated with ATP-sensitive K(+) channels. Br J Pharmacol. 2000;129:110–4.CrossRefGoogle Scholar
  52. 52.
    Soares AC, Leite R, Tatsuo MA, Duarte ID. Activation of ATP-sensitive K(+) channels: mechanism of peripheral antinociceptive action of the nitric oxide donor, sodium nitroprusside. Eur J Pharmacol. 2000;400:67–71.CrossRefGoogle Scholar
  53. 53.
    Han J, Kim N, Kim E, Ho WK, Earm YE. Modulation of ATP-sensitive potassium channels by cGMP-dependent protein kinase in rabbit ventricular myocytes. J Biol Chem. 2001;276:22140–7.CrossRefGoogle Scholar
  54. 54.
    Han J, Kim N, Joo H, Kim E, Earm YE. ATP-sensitive K(+) channel activation by nitric oxide and protein kinase G in rabbit ventricular myocytes. Am J Physiol Heart Circ Physiol. 2002;283:H1545–54.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Rafael Vercelino
    • 1
  • Thiago Mattar Cunha
    • 2
  • Elisa Silva Ferreira
    • 1
  • Fernando Q. Cunha
    • 2
  • Sérgio H. Ferreira
    • 2
  • Marcelo G. de Oliveira
    • 1
  1. 1.Institute of Chemistry, University of Campinas (UNICAMP)CampinasBrazil
  2. 2.Department of PharmacologyFaculty of Medicine, University of São PauloRibeirão PrêtoBrazil

Personalised recommendations