Structural characteristics and corrosion behavior of biodegradable Mg–Zn, Mg–Zn–Gd alloys



In this research, binary Mg–Zn (up to 3 wt% Zn) and ternary Mg–Zn–Gd (up to 3 wt% Gd, 3 wt% Zn) alloys were prepared by induction melting in an argon atmosphere. The structures of these alloys were characterized using light and scanning electron microscopy, energy dispersive spectrometry, X-ray diffraction and X-ray fluorescence. In addition, Brinell hardness measurements were taken to supplement these studies. Corrosion behavior was evaluated by immersion tests and potentiodynamic measurements in a physiological solution (9 g/l NaCl). Depending on the composition, structures of the as-cast alloys contained α-Mg dendrites, MgZn, Mg5Gd and Mg3Gd2Zn3 phases. Compared to pure Mg, zinc improved the corrosion resistance of binary Mg–Zn. Gadolinium also improved the corrosion resistance in the case of Mg–1Zn–3Gd alloy. The highest corrosion rate was observed for Mg–3Zn–3Gd alloy. Our results improve the understanding of the relationships between the structure and corrosion behavior of our studied alloy systems.


Corrosion Resistance Corrosion Rate Magnesium Alloy Corrosion Product MgZn 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Authors wish to thank the Czech Science Foundation (Project no. P108/12/G043) for the financial support.


  1. 1.
    Song G. Control of biodegradation of biocompatable magnesium alloys. Corros Sci. 2007;49(4):1696–701.CrossRefGoogle Scholar
  2. 2.
    Seal CK, Vince K, Hodgson MA. Biodegradable surgical implants based on magnesium alloys – a review of current research. IOP Conference Ser Mater Sci Eng. 2009;4(1):012011.CrossRefGoogle Scholar
  3. 3.
    Davis JR. Handbook of materials for medical devices. Materials Park: ASM International; 2003.Google Scholar
  4. 4.
    Wang X, Lu HM, Li XL, Li L, Zhenh YF. Effect of cooling rate and composition on microstructures and properties of Zn–Mg alloys. Trans Nonferr Met Soc China. 2007;17:S122–5.CrossRefGoogle Scholar
  5. 5.
    Jürgen V. Magnesium: nutrition and metabolism. Mol Aspects Med. 2003;24(1–3):27–37.Google Scholar
  6. 6.
    Staiger MP, Pietak AM, Huadmai J, Dias G. Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials. 2006;27(9):1728–34.CrossRefGoogle Scholar
  7. 7.
    Zeng R, Dietzel W, Witte F, et al. Progress and challenge for magnesium alloys as biomaterials, vol. 8. Weinheim: Wiley; 2008.Google Scholar
  8. 8.
    Witte F. The history of biodegradable magnesium implants: a review. Acta Biomater. 2010;6(5):1680–92.CrossRefGoogle Scholar
  9. 9.
    Pereda MD, Alonso C, Burgos-Asperilla L, del Valle JA, Ruano OA, Perez P, et al. Corrosion inhibition of powder metallurgy Mg by fluoride treatments. Acta Biomater. 2010;6(5):1772–82.CrossRefGoogle Scholar
  10. 10.
    Gray-Munro JE, Seguin C, Strong M. Influence of surface modification on the in vitro corrosion rate of magnesium alloy AZ31. J Biomed Mater Res A. 2009;91A(1):221–30.CrossRefGoogle Scholar
  11. 11.
    Hiromoto S, Shishido T, Yamamoto A, Maruyama N, Somekawa H, Mukai T. Precipitation control of calcium phosphate on pure magnesium by anodization. Corros Sci. 2008;50(10):2906–13.CrossRefGoogle Scholar
  12. 12.
    Chun-Yan Z, Rong-Chang Z, Cheng-Long L, Jia-Cheng G. Comparison of calcium phosphate coatings on Mg–Al and Mg–Ca alloys and their corrosion behavior in Hank’s solution. Surf Coat Technol. 2010;204(21–22):3636–40.CrossRefGoogle Scholar
  13. 13.
    Erbel R, Di Mario C, Bartunek J, Bonnier J, de Bruyne B, Eberli FR, et al. Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: a prospective, non-randomised multicentre trial. Lancet. 2007;369(9576):1869–75.CrossRefGoogle Scholar
  14. 14.
    Di Mario C, Griffiths HUW, Goktekin O, Peeters N, Verbist JAN, Bosiers M, et al. Drug-eluting bioabsorbable magnesium stent. J Interv Cardiol. 2004;17(6):391–5.CrossRefGoogle Scholar
  15. 15.
    Peeters P, Bosiers M, Verbist J, Deloose K, Heublein B. Preliminary results after application of absorbable metal stents in patients with critical limb ischemia. J Endovasc Ther. 2005;12(1):1–5.CrossRefGoogle Scholar
  16. 16.
    Chang J, Guo X, He S, Fu P, Peng L, Ding W. Investigation of the corrosion for Mg–xGd–3Y–0.4Zr (x = 6,8,10,12 wt%) alloys in a peak-aged condition. Corros Sci. 2008;50(1):166–77.CrossRefGoogle Scholar
  17. 17.
    Rokhlin LL, Nikitina NI. Recovery after ageing of Mg–Y and Mg–Gd alloys. J Alloy Comp. 1998;279(2):166–70.CrossRefGoogle Scholar
  18. 18.
    Hänzi AC, Gerber I, Schinhammer M, Löffler JF, Uggowitzer PJ. On the in vitro and in vivo degradation performance and biological response of new biodegradable Mg–Y–Zn alloys. Acta Biomater. 2010;6(5):1824–33.CrossRefGoogle Scholar
  19. 19.
    Hort N, Huang Y, Fechner D, Stormer M, Blawert C, Witte F, et al. Magnesium alloys as implant materials-principles of property design for Mg–RE alloys. Acta Biomater. 2010;6(5):1714–25.CrossRefGoogle Scholar
  20. 20.
    Xin Y, Hu T, Chu PK. In vitro studies of biomedical magnesium alloys in a simulated physiological environment: a review. Acta Biomater. 2011;7(4):1452–9.CrossRefGoogle Scholar
  21. 21.
    Zhang S, Zhang X, Zhao C, Li J, Song Y, Xie C, et al. Research on an Mg–Zn alloy as a degradable biomaterial. Acta Biomater. 2010;6(2):626–40.CrossRefGoogle Scholar
  22. 22.
    Witte F, Hort N, Vogt C, Cohen S, Kainer KU, Willumeit R, et al. Degradable biomaterials based on magnesium corrosion. Curr Opin Solid State Mater Sci. 2008;12(5–6):63–72.CrossRefGoogle Scholar
  23. 23.
  24. 24.
    Li Z, Gu X, Lou S, Zheng Y. The development of binary Mg–Ca alloys for use as biodegradable materials within bone. Biomaterials. 2008;29(10):1329–44.CrossRefGoogle Scholar
  25. 25.
    Zhang EL, Yang L, Xu JW, Chen HY. Microstructure, mechanical properties and bio-corrosion properties of Mg–Si(–Ca, Zn) alloy for biomedical application. Acta Biomater. 2010;6(5):1756–62.CrossRefGoogle Scholar
  26. 26.
    Zhang E, Yang L. Microstructure, mechanical properties and bio-corrosion properties of Mg–Zn–Mn–Ca alloy for biomedical application. Mater Sci Eng A. 2008;497(1–2):111–8.Google Scholar
  27. 27.
    Gu XN, Zheng W, Cheng Y, Zheng YF. A study on alkaline heat treated Mg–Ca alloy for the control of the biocorrosion rate. Acta Biomater. 2009;5(7):2790–9.CrossRefGoogle Scholar
  28. 28.
    Huan Z, Leeflang M, Zhou J, Fratila-Apachitei L, Duszczyk J. In vitro degradation behavior and cytocompatibility of Mg–Zn–Zr alloys. J Mater Sci Mater Med. 2010;21(9):2623–35.CrossRefGoogle Scholar
  29. 29.
    Gu X, Zheng Y, Zhong S, Xi T, Wang J, Wang W. Corrosion of, and cellular responses to Mg–Zn–Ca bulk metallic glasses. Biomaterials. 2010;31(6):1093–103.CrossRefGoogle Scholar
  30. 30.
    Zberg B, Uggowitzer PJ, Loffler JF. MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants. Nat Mater. 2009;8(11):887–91.CrossRefGoogle Scholar
  31. 31.
    Zhang E, He W, Du H, Yang K. Microstructure, mechanical properties and corrosion properties of Mg–Zn–Y alloys with low Zn content. Mat Sci Eng A. 2008;488(1–2):102–11.CrossRefGoogle Scholar
  32. 32.
    Nie JF, Gao X, Zhu SM. Enhanced age hardening response and creep resistance of Mg–Gd alloys containing Zn. Scripta Mater. 2005;53(9):1049–53.CrossRefGoogle Scholar
  33. 33.
    Yuan G, Kato H, Amiya K, Inoue A. Excellent creep properties of Mg-Zn-Cu-Gd-based alloy strengthened by quasicrystals and Laves phases. J Mater Res. 2005;20(5):1278–86.CrossRefGoogle Scholar
  34. 34.
    Liu Y, Yuan G, Ding W, Lu C. Deformation behavior of Mg–Zn–Gd-based alloys reinforced with quasicrystal and Laves phases at elevated temperatures. J Alloy Comp. 2007;427(1–2):160–5.CrossRefGoogle Scholar
  35. 35.
    Massalski B, Okamoto H. Binary alloys phase diagrams. 2nd ed. Materials Park: ASM International; 1996.Google Scholar
  36. 36.
    Liu Y, Yuan GY, Lu C, Ding WJ. Progress in light metals, aerospace materials and superconductors. Mat Sci Forum. 2007;546–549:323–6.CrossRefGoogle Scholar
  37. 37.
    Xu DK, Tang WN, Liu L, Xu YB, Han EH. Effect of Y concentration on the microstructure and mechanical properties of as-cast Mg–Zn–Y–Zr alloys. J Alloy Comp. 2007;432(1–2):129–34.CrossRefGoogle Scholar
  38. 38.
    Liu K, Zhang J, Rokhlin LL, Elkin FM, Tang D, Meng J. Microstructures and mechanical properties of extruded Mg–8Gd–0.4Zr alloys containing Zn. Mater Sci Eng A. 2009;505(1–2):13–9.Google Scholar
  39. 39.
    Wu S, Gao JC, Qiao LY, Wang Y. Corrosion behavior of Mg and Mg–Zn alloys in simulated body fluid. Trans Nonferr Met Soc China. 2008;18(3):588–92.CrossRefGoogle Scholar
  40. 40.
    Wu D, Chen RS, Han EH. Excellent room-temperature ductility and formability of rolled Mg–Gd–Zn alloy sheets. J Alloy Comp. 2011;509(6):2856–63.CrossRefGoogle Scholar
  41. 41.
    Friedrich HE, Mordike BL. Magnesium technology. Berlin: Springer; 2006.Google Scholar
  42. 42.
    Yang J, Wang L, Wang L, Zhang H. Microstructures and mechanical properties of the Mg–4.5Zn–xGd (x = 0, 2, 3 and 5) alloys. J Alloy Comp. 2008;459(1-2):274–80.CrossRefGoogle Scholar
  43. 43.
    Millazo G, Caroli S, Sharma VK. Tables of standart electrode potentials. Chichester: Wiley; 1978.Google Scholar
  44. 44.
    Qi HY, Huang GX, Bo H, Xu GL, Liu LB, Jin ZP. Experimental investigation and thermodynamic assessment of the Mg–Zn–Gd system focused on Mg-rich corner. J Mater Sci. 2011;47(3):1319–30.CrossRefGoogle Scholar
  45. 45.
    Balasubramani N, Pillai UTS, Pai BC. Effect of Zn concentration on the microstructure and phase formation of Mg–5Gd alloy. J Alloy Comp. 2008;460(1–2):L6–10.CrossRefGoogle Scholar
  46. 46.
    Chen R, Liang S, Wu D, Han E. Consideration of castability and formability for new magnesium alloys. Open J Met. 2012;2(1):8–17.CrossRefGoogle Scholar
  47. 47.
    Liu Y, Yuan G, Lu C, Ding W. Stable icosahedral phase in Mg–Zn–Gd alloy. Scripta Mater. 2006;55(10):919–22.CrossRefGoogle Scholar
  48. 48.
    Yong L, Guangyin Y, Song Z, Xinping Z, Chen L, Wenjiang D. Effects of Zn/Gd ratio and content of Zn, Gd on phase constitutions of Mg alloys. Mater Trans. 2008;49(5):941–4.CrossRefGoogle Scholar
  49. 49.
    Li JH, Schumacher P. Solidification and age hardening behaviour of Mg–Zn–Gd Alloys. IOP Conf Ser Mater Sci Eng. 2012;27(1):012021.CrossRefGoogle Scholar
  50. 50.
    Song Y, Han E-H, Shan D, Yim CD, You BS. The effect of Zn concentration on the corrosion behavior of Mg–xZn alloys. Corros Sci. 2012;65:322–30.CrossRefGoogle Scholar
  51. 51.
    Song Y, Han E-H, Shan D, Yim CD, You BS. The role of second phases in the corrosion behavior of Mg–5Zn alloy. Corros Sci. 2012;60:238–45.CrossRefGoogle Scholar
  52. 52.
    Shi Z, Liu M, Atrens A. Measurement of the corrosion rate of magnesium alloys using Tafel extrapolation. Corros Sci. 2010;52(2):579–88.CrossRefGoogle Scholar
  53. 53.
    Atrens A, Liu M, Zainal Abidin NI. Corrosion mechanism applicable to biodegradable magnesium implants. Mater Sci Eng B. 2011;176(20):1609–36.CrossRefGoogle Scholar
  54. 54.
    Zhao M-C, Schmutz P, Brunner S, Liu M, Song G-l, Atrens A. An exploratory study of the corrosion of Mg alloys during interrupted salt spray testing. Corros Sci. 2009;51(6):1277–92.CrossRefGoogle Scholar
  55. 55.
    Gale WF, Totemeier TC. Smithells metals reference book. 8th ed. Amsterdam: Elsevier; 2004.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Metals and Corrosion EngineeringInstitute of Chemical Technology, PraguePrague 6Czech Republic

Personalised recommendations