Skip to main content

Advertisement

Log in

Structural characteristics and corrosion behavior of biodegradable Mg–Zn, Mg–Zn–Gd alloys

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

In this research, binary Mg–Zn (up to 3 wt% Zn) and ternary Mg–Zn–Gd (up to 3 wt% Gd, 3 wt% Zn) alloys were prepared by induction melting in an argon atmosphere. The structures of these alloys were characterized using light and scanning electron microscopy, energy dispersive spectrometry, X-ray diffraction and X-ray fluorescence. In addition, Brinell hardness measurements were taken to supplement these studies. Corrosion behavior was evaluated by immersion tests and potentiodynamic measurements in a physiological solution (9 g/l NaCl). Depending on the composition, structures of the as-cast alloys contained α-Mg dendrites, MgZn, Mg5Gd and Mg3Gd2Zn3 phases. Compared to pure Mg, zinc improved the corrosion resistance of binary Mg–Zn. Gadolinium also improved the corrosion resistance in the case of Mg–1Zn–3Gd alloy. The highest corrosion rate was observed for Mg–3Zn–3Gd alloy. Our results improve the understanding of the relationships between the structure and corrosion behavior of our studied alloy systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Song G. Control of biodegradation of biocompatable magnesium alloys. Corros Sci. 2007;49(4):1696–701.

    Article  CAS  Google Scholar 

  2. Seal CK, Vince K, Hodgson MA. Biodegradable surgical implants based on magnesium alloys – a review of current research. IOP Conference Ser Mater Sci Eng. 2009;4(1):012011.

    Article  Google Scholar 

  3. Davis JR. Handbook of materials for medical devices. Materials Park: ASM International; 2003.

    Google Scholar 

  4. Wang X, Lu HM, Li XL, Li L, Zhenh YF. Effect of cooling rate and composition on microstructures and properties of Zn–Mg alloys. Trans Nonferr Met Soc China. 2007;17:S122–5.

    Article  CAS  Google Scholar 

  5. Jürgen V. Magnesium: nutrition and metabolism. Mol Aspects Med. 2003;24(1–3):27–37.

    Google Scholar 

  6. Staiger MP, Pietak AM, Huadmai J, Dias G. Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials. 2006;27(9):1728–34.

    Article  CAS  Google Scholar 

  7. Zeng R, Dietzel W, Witte F, et al. Progress and challenge for magnesium alloys as biomaterials, vol. 8. Weinheim: Wiley; 2008.

    Google Scholar 

  8. Witte F. The history of biodegradable magnesium implants: a review. Acta Biomater. 2010;6(5):1680–92.

    Article  CAS  Google Scholar 

  9. Pereda MD, Alonso C, Burgos-Asperilla L, del Valle JA, Ruano OA, Perez P, et al. Corrosion inhibition of powder metallurgy Mg by fluoride treatments. Acta Biomater. 2010;6(5):1772–82.

    Article  CAS  Google Scholar 

  10. Gray-Munro JE, Seguin C, Strong M. Influence of surface modification on the in vitro corrosion rate of magnesium alloy AZ31. J Biomed Mater Res A. 2009;91A(1):221–30.

    Article  CAS  Google Scholar 

  11. Hiromoto S, Shishido T, Yamamoto A, Maruyama N, Somekawa H, Mukai T. Precipitation control of calcium phosphate on pure magnesium by anodization. Corros Sci. 2008;50(10):2906–13.

    Article  CAS  Google Scholar 

  12. Chun-Yan Z, Rong-Chang Z, Cheng-Long L, Jia-Cheng G. Comparison of calcium phosphate coatings on Mg–Al and Mg–Ca alloys and their corrosion behavior in Hank’s solution. Surf Coat Technol. 2010;204(21–22):3636–40.

    Article  Google Scholar 

  13. Erbel R, Di Mario C, Bartunek J, Bonnier J, de Bruyne B, Eberli FR, et al. Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: a prospective, non-randomised multicentre trial. Lancet. 2007;369(9576):1869–75.

    Article  CAS  Google Scholar 

  14. Di Mario C, Griffiths HUW, Goktekin O, Peeters N, Verbist JAN, Bosiers M, et al. Drug-eluting bioabsorbable magnesium stent. J Interv Cardiol. 2004;17(6):391–5.

    Article  Google Scholar 

  15. Peeters P, Bosiers M, Verbist J, Deloose K, Heublein B. Preliminary results after application of absorbable metal stents in patients with critical limb ischemia. J Endovasc Ther. 2005;12(1):1–5.

    Article  Google Scholar 

  16. Chang J, Guo X, He S, Fu P, Peng L, Ding W. Investigation of the corrosion for Mg–xGd–3Y–0.4Zr (x = 6,8,10,12 wt%) alloys in a peak-aged condition. Corros Sci. 2008;50(1):166–77.

    Article  CAS  Google Scholar 

  17. Rokhlin LL, Nikitina NI. Recovery after ageing of Mg–Y and Mg–Gd alloys. J Alloy Comp. 1998;279(2):166–70.

    Article  CAS  Google Scholar 

  18. Hänzi AC, Gerber I, Schinhammer M, Löffler JF, Uggowitzer PJ. On the in vitro and in vivo degradation performance and biological response of new biodegradable Mg–Y–Zn alloys. Acta Biomater. 2010;6(5):1824–33.

    Article  Google Scholar 

  19. Hort N, Huang Y, Fechner D, Stormer M, Blawert C, Witte F, et al. Magnesium alloys as implant materials-principles of property design for Mg–RE alloys. Acta Biomater. 2010;6(5):1714–25.

    Article  CAS  Google Scholar 

  20. Xin Y, Hu T, Chu PK. In vitro studies of biomedical magnesium alloys in a simulated physiological environment: a review. Acta Biomater. 2011;7(4):1452–9.

    Article  CAS  Google Scholar 

  21. Zhang S, Zhang X, Zhao C, Li J, Song Y, Xie C, et al. Research on an Mg–Zn alloy as a degradable biomaterial. Acta Biomater. 2010;6(2):626–40.

    Article  CAS  Google Scholar 

  22. Witte F, Hort N, Vogt C, Cohen S, Kainer KU, Willumeit R, et al. Degradable biomaterials based on magnesium corrosion. Curr Opin Solid State Mater Sci. 2008;12(5–6):63–72.

    Article  CAS  Google Scholar 

  23. http://ods.od.nih.gov/factsheets/Zinc-HealthProfessional/. Accessed 19 Dec 2012.

  24. Li Z, Gu X, Lou S, Zheng Y. The development of binary Mg–Ca alloys for use as biodegradable materials within bone. Biomaterials. 2008;29(10):1329–44.

    Article  CAS  Google Scholar 

  25. Zhang EL, Yang L, Xu JW, Chen HY. Microstructure, mechanical properties and bio-corrosion properties of Mg–Si(–Ca, Zn) alloy for biomedical application. Acta Biomater. 2010;6(5):1756–62.

    Article  CAS  Google Scholar 

  26. Zhang E, Yang L. Microstructure, mechanical properties and bio-corrosion properties of Mg–Zn–Mn–Ca alloy for biomedical application. Mater Sci Eng A. 2008;497(1–2):111–8.

    Google Scholar 

  27. Gu XN, Zheng W, Cheng Y, Zheng YF. A study on alkaline heat treated Mg–Ca alloy for the control of the biocorrosion rate. Acta Biomater. 2009;5(7):2790–9.

    Article  CAS  Google Scholar 

  28. Huan Z, Leeflang M, Zhou J, Fratila-Apachitei L, Duszczyk J. In vitro degradation behavior and cytocompatibility of Mg–Zn–Zr alloys. J Mater Sci Mater Med. 2010;21(9):2623–35.

    Article  CAS  Google Scholar 

  29. Gu X, Zheng Y, Zhong S, Xi T, Wang J, Wang W. Corrosion of, and cellular responses to Mg–Zn–Ca bulk metallic glasses. Biomaterials. 2010;31(6):1093–103.

    Article  CAS  Google Scholar 

  30. Zberg B, Uggowitzer PJ, Loffler JF. MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants. Nat Mater. 2009;8(11):887–91.

    Article  CAS  Google Scholar 

  31. Zhang E, He W, Du H, Yang K. Microstructure, mechanical properties and corrosion properties of Mg–Zn–Y alloys with low Zn content. Mat Sci Eng A. 2008;488(1–2):102–11.

    Article  Google Scholar 

  32. Nie JF, Gao X, Zhu SM. Enhanced age hardening response and creep resistance of Mg–Gd alloys containing Zn. Scripta Mater. 2005;53(9):1049–53.

    Article  CAS  Google Scholar 

  33. Yuan G, Kato H, Amiya K, Inoue A. Excellent creep properties of Mg-Zn-Cu-Gd-based alloy strengthened by quasicrystals and Laves phases. J Mater Res. 2005;20(5):1278–86.

    Article  CAS  Google Scholar 

  34. Liu Y, Yuan G, Ding W, Lu C. Deformation behavior of Mg–Zn–Gd-based alloys reinforced with quasicrystal and Laves phases at elevated temperatures. J Alloy Comp. 2007;427(1–2):160–5.

    Article  CAS  Google Scholar 

  35. Massalski B, Okamoto H. Binary alloys phase diagrams. 2nd ed. Materials Park: ASM International; 1996.

    Google Scholar 

  36. Liu Y, Yuan GY, Lu C, Ding WJ. Progress in light metals, aerospace materials and superconductors. Mat Sci Forum. 2007;546–549:323–6.

    Article  Google Scholar 

  37. Xu DK, Tang WN, Liu L, Xu YB, Han EH. Effect of Y concentration on the microstructure and mechanical properties of as-cast Mg–Zn–Y–Zr alloys. J Alloy Comp. 2007;432(1–2):129–34.

    Article  CAS  Google Scholar 

  38. Liu K, Zhang J, Rokhlin LL, Elkin FM, Tang D, Meng J. Microstructures and mechanical properties of extruded Mg–8Gd–0.4Zr alloys containing Zn. Mater Sci Eng A. 2009;505(1–2):13–9.

    Google Scholar 

  39. Wu S, Gao JC, Qiao LY, Wang Y. Corrosion behavior of Mg and Mg–Zn alloys in simulated body fluid. Trans Nonferr Met Soc China. 2008;18(3):588–92.

    Article  Google Scholar 

  40. Wu D, Chen RS, Han EH. Excellent room-temperature ductility and formability of rolled Mg–Gd–Zn alloy sheets. J Alloy Comp. 2011;509(6):2856–63.

    Article  CAS  Google Scholar 

  41. Friedrich HE, Mordike BL. Magnesium technology. Berlin: Springer; 2006.

    Google Scholar 

  42. Yang J, Wang L, Wang L, Zhang H. Microstructures and mechanical properties of the Mg–4.5Zn–xGd (x = 0, 2, 3 and 5) alloys. J Alloy Comp. 2008;459(1-2):274–80.

    Article  CAS  Google Scholar 

  43. Millazo G, Caroli S, Sharma VK. Tables of standart electrode potentials. Chichester: Wiley; 1978.

    Google Scholar 

  44. Qi HY, Huang GX, Bo H, Xu GL, Liu LB, Jin ZP. Experimental investigation and thermodynamic assessment of the Mg–Zn–Gd system focused on Mg-rich corner. J Mater Sci. 2011;47(3):1319–30.

    Article  Google Scholar 

  45. Balasubramani N, Pillai UTS, Pai BC. Effect of Zn concentration on the microstructure and phase formation of Mg–5Gd alloy. J Alloy Comp. 2008;460(1–2):L6–10.

    Article  CAS  Google Scholar 

  46. Chen R, Liang S, Wu D, Han E. Consideration of castability and formability for new magnesium alloys. Open J Met. 2012;2(1):8–17.

    Article  CAS  Google Scholar 

  47. Liu Y, Yuan G, Lu C, Ding W. Stable icosahedral phase in Mg–Zn–Gd alloy. Scripta Mater. 2006;55(10):919–22.

    Article  CAS  Google Scholar 

  48. Yong L, Guangyin Y, Song Z, Xinping Z, Chen L, Wenjiang D. Effects of Zn/Gd ratio and content of Zn, Gd on phase constitutions of Mg alloys. Mater Trans. 2008;49(5):941–4.

    Article  Google Scholar 

  49. Li JH, Schumacher P. Solidification and age hardening behaviour of Mg–Zn–Gd Alloys. IOP Conf Ser Mater Sci Eng. 2012;27(1):012021.

    Article  Google Scholar 

  50. Song Y, Han E-H, Shan D, Yim CD, You BS. The effect of Zn concentration on the corrosion behavior of Mg–xZn alloys. Corros Sci. 2012;65:322–30.

    Article  CAS  Google Scholar 

  51. Song Y, Han E-H, Shan D, Yim CD, You BS. The role of second phases in the corrosion behavior of Mg–5Zn alloy. Corros Sci. 2012;60:238–45.

    Article  CAS  Google Scholar 

  52. Shi Z, Liu M, Atrens A. Measurement of the corrosion rate of magnesium alloys using Tafel extrapolation. Corros Sci. 2010;52(2):579–88.

    Article  CAS  Google Scholar 

  53. Atrens A, Liu M, Zainal Abidin NI. Corrosion mechanism applicable to biodegradable magnesium implants. Mater Sci Eng B. 2011;176(20):1609–36.

    Article  CAS  Google Scholar 

  54. Zhao M-C, Schmutz P, Brunner S, Liu M, Song G-l, Atrens A. An exploratory study of the corrosion of Mg alloys during interrupted salt spray testing. Corros Sci. 2009;51(6):1277–92.

    Article  CAS  Google Scholar 

  55. Gale WF, Totemeier TC. Smithells metals reference book. 8th ed. Amsterdam: Elsevier; 2004.

    Google Scholar 

Download references

Acknowledgments

Authors wish to thank the Czech Science Foundation (Project no. P108/12/G043) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Kubásek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kubásek, J., Vojtěch, D. Structural characteristics and corrosion behavior of biodegradable Mg–Zn, Mg–Zn–Gd alloys. J Mater Sci: Mater Med 24, 1615–1626 (2013). https://doi.org/10.1007/s10856-013-4916-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-013-4916-3

Keywords

Navigation