Aluminium-free glass polyalkenoate cements: ion release and in vitro antibacterial efficacy

  • A. W. Wren
  • J. P. Hansen
  • S. Hayakawa
  • M. R. Towler


Glass polyalkenoate cements (GPCs) have exhibited potential as bone cements. This study investigates the effect of substituting TiO2 for SiO2 in the glass phase and the subsequent effect on cement rheology, mechanical properties, ion release and antibacterial properties. Glass characterization revealed a reduction in glass transition temperature (T g ) from 685 to 669 °C with the addition of 6 mol % TiO2 (AT-2). Magic angle spinning nuclear magnetic resonance (MAS-NMR) revealed a shift from −81 ppm to −76pmm when comparing a Control glass to AT-2, indicating de-polymerization of the Si network. The incorporation of TiO2 also increased the working time (T w ) from 19 to 61 s and setting time (T s ) from 70 to 427 s. The maximum compressive strength (σ c ) increased from 64 to 85 MPa. Ion release studies determined that the addition of Ti to the glass reduced the release of zinc, calcium and strontium ions, with low concentrations of titanium being released. Antibacterial testing in E. coli resulted in greater bactericidal effects when tested in aqueous broth for both titanium containing cements.


Compressive Strength Bioactive Glass Network Modifier Glass Phase Cement Sample 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Nicholson JW. Chemistry of glass ionomer cements. Biomaterials. 1998;19:485–94.CrossRefGoogle Scholar
  2. 2.
    Nicholson JW, Wilson AD. Acid-base cements: their biomedical and industrial applications. Chemistry of Solid State Materials, vol. 3. Cambridge: Cambridge University; 1993.Google Scholar
  3. 3.
    Griffin S, Hill R. Influence of poly(acrylic acid) molar mass on the fracture properties of glass polyalkenoate cements. J Mater Sci. 1998;33:5383–96.CrossRefGoogle Scholar
  4. 4.
    Vermeersch G, Leloup G, Vreven J. Fluoride release from glass–ionomer cements, compomers and resin composites. J Oral Rehabil. 2001;28:26–32.CrossRefGoogle Scholar
  5. 5.
    Marczuk-Kolada G, Jakoniuk P, Mystkowska J, Luczaj-Cepowicz E, Waszkiel D, Dabrowski JR, Leszczynska K. Fluoride release and antibacterial activity of selected dental materials. Postepy Higieny Medycyny Doswiadczalnej. 2006;60:416–20.Google Scholar
  6. 6.
    Hoang-Xuan K, Perrotte P, Dubas F, Philippon J, Poisson FM. Myoclonic encephalopathy after exposure to aluminium. The Lancet. 1996;347:910–11.CrossRefGoogle Scholar
  7. 7.
    Polizzi S, Pira E, Ferrara M, Bugiani M, Papaleo A, Albera R, Palmi S. Neurotoxic effects of aluminium among foundry workers and Alzheimers disease. Neurotoxicity. 2002;23:761–74.CrossRefGoogle Scholar
  8. 8.
    Reusche E, Pilz P, Oberascher G, Linder B, Egensperger R, Gloeckner K, Trinka E, Iglseder B. Subacute fatal aluminium encephalopathy after reconstructive otoneurosurgery: a case report. Hum Pathol. 2001;32(10):1136–9.CrossRefGoogle Scholar
  9. 9.
    Carter DH, Sloan P, Brook IM, Hatton PV. Role of exchanged ions in the integration of ionomeric (glass polyalkenoate) bone substitutes. Biomaterials. 1997;18:459–66.CrossRefGoogle Scholar
  10. 10.
    Boyd D, Towler MR, Wren AW, Clarkin OM, Tanner DA. TEM analysis of apatite surface layers observed on zinc based glass polyalkenoate cements. J Mater Sci. 2008;43:1170–3.CrossRefGoogle Scholar
  11. 11.
    Wilson AD, McLean JW. Glass-ionomer cement. Chicago: Quintessence Publishing Company; 1988.Google Scholar
  12. 12.
    Schwager K. Titanium as a biomaterial for ossicular replacement: results after implantation in the middle ear of the rabbit. Eur Arch Otorhinolaryngol. 1998;255:396–401.CrossRefGoogle Scholar
  13. 13.
    Lausmaa J. Surface spectroscopic characterization of titanium implant materials. J Electron Spectrosc Relat Phenom. 1996;81:343–61.CrossRefGoogle Scholar
  14. 14.
    Piscanec S, Ciacchi LC, Vesselli E, Comelli G, Sbaizero O, Meriani S, De Vita A. Bioactivity of TiN-coated titanium implants. Acta Mater. 2004;52:1237–45.CrossRefGoogle Scholar
  15. 15.
    Kashif I, Soliman AA, Farouk H, Sanad AM. Effect of titanium addition on crystallization kinetics of lithium borosilicate glass. J Alloys Compd. 2009;475:712–7.CrossRefGoogle Scholar
  16. 16.
    Satyanarayana T, Kityk IV, Ozga K, Piasecki M, Bragiel P, Brik MG, Ravi Kumar V, Reshak AH, Veeraiah N. Role of titanium valence states in optical and electronic features of PbO-Sb2O3-B2O3:TiO2 glass alloys. J Alloys Compd. 2009;482(1-2):283–97.CrossRefGoogle Scholar
  17. 17.
    Yamanaka H, Nakahata K, Terai R. Structure of Na2O-TiO2-SiO2 glasses from the viewpoint of non-bridging oxygens measured by XPS. J Non Cryst Solids 1987;95 & 96:405–410.Google Scholar
  18. 18.
    Iwamoto N, Tsunawaki Y, Masao F, Hatfori T. Raman spectra of K2O–SiO2 and K2O–SiO2–TiO2 glasses. J Non Cryst Solids. 1975;18:303–6.CrossRefGoogle Scholar
  19. 19.
    Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity. Biomaterials. 2006;27:2907–15.CrossRefGoogle Scholar
  20. 20.
    Serro AP, Fernandes AC, Saramago B, Lima J, Barbosa MA. Apatite deposition on titanium surfaces—the role of albumin adsorption. Biomaterials. 1997;18:963–8.CrossRefGoogle Scholar
  21. 21.
    Sul Y-T, Johansson C, Byon E, Albrektsson T. The bone response of oxidized bioactive and non-bioactive titanium implants. Biomaterials. 2005;26:6720–30.CrossRefGoogle Scholar
  22. 22.
    Takadama H, Kim H-M, Kokubo T, Nakamura T. XPS study of the process of apatite formation on bioactive Ti–6Al–4V alloy in simulated body fluid. Sci Technol Adv Mater. 2001;2:389–96.CrossRefGoogle Scholar
  23. 23.
    Byon E, Moon S, Cho S-B, Jeong C-Y, Jeong Y, Sul Y-T. Electrochemical property and apatite formation of metal ion implanted titanium for medical implants. Surf Coat Technol. 2005;200(1–4):1018–21.CrossRefGoogle Scholar
  24. 24.
    Mysen BO, Virgo D, Kushiro I. The structural role of aluminium in silicate melts—a Raman spectroscopic study at 1 atmosphere. Am Mineral. 1981;66:678–701.Google Scholar
  25. 25.
    Wren AW, Laffir FR, Kidari A, Towler MR. The structural role of titanium in Ca–Sr–Zn–Si/Ti glasses for medical applications. J Non Cryst Solids. 2010;357(3):1021–6.CrossRefGoogle Scholar
  26. 26.
    Serra J, Gonzalez P, Liste S, Chiussi S, Leon B, Perez-amor M, Ylanen HO, Hupa M. Influence of the non-bridging oxygen groups on the bioactivity of silicate glasses. J Mater Sci Mater Med. 2002;13:1221–5.CrossRefGoogle Scholar
  27. 27.
    Marie PJ. Strontium ranelate: new insights into its dual mode of action? Bone. 2007;40(1):S5–8.CrossRefGoogle Scholar
  28. 28.
    Marie PJ. Strontium ranelate; a novel mode of action optimizing bone formation and resorption. Osteoporos Int. 2005;16:S7–10.CrossRefGoogle Scholar
  29. 29.
    Boyd D, Li H, Tanner DA, Towler MR, Wall JG. The antibacterial effects of zinc ion migration from zinc-based glass polyalkenoate cements. J Mater Sci Mater Med. 2006;17:489–94.CrossRefGoogle Scholar
  30. 30.
    Yamamoto O. Influence of particle size on the antibacterial activity of zinc oxide International. J Inorg Mater. 2001;3:643–6.CrossRefGoogle Scholar
  31. 31.
    King JC. Does poor zinc nutriture retard skeletal growth and mineralization in adolescents. Am J Clin Nutr. 1996;64:375–6.Google Scholar
  32. 32.
    Yamaguchi M, Ma ZJ. Role of endogenous zinc in the enhancement of bone protein synthesis associated with bone growth of newborn rats. J Miner Metab. 2001;19:38–44.CrossRefGoogle Scholar
  33. 33.
    International Organization for Standardization 9917. Dental Water Based Cements (E), in Case Postale 56. Switzerland: Geneva; 1991. p. CH-11211.Google Scholar
  34. 34.
    Aguiar H, Serra J, Gonzalez P, Leon B. Structural study of sol-gel silicate glasses by IR and Raman spectroscopies. J Non Cryst Solids. 2009;335:475–80.CrossRefGoogle Scholar
  35. 35.
    Stamboulis A, Law RV, Hill RG. Characterization of commercial ionomer glasses using magic angle nuclear magnetic resonance (MAS-NMR). Biomaterials. 2004;25(17):3907–13.CrossRefGoogle Scholar
  36. 36.
    Galliano PG, Porto JM, Spezl L, Varetti EL, Sobrados I, Sanz J. Analysis by nuclear magnetic resonance and raman spectroscopy of the structure of bioactive alkaline-earth silicophosphate glasses. Mater Res Bull. 1994;29(12):1297–306.CrossRefGoogle Scholar
  37. 37.
    Hayakawa S, Osaka A, Nishioka H, Matsumoto S, Minura Y. Structure of lead oxyfluorosilicate glasses: X-ray photoelectron spectroscopy and nuclear magnetic resonance spectroscopy and molecular dynamics simulation. J Non Cryst Solids. 2000;272:103–18.CrossRefGoogle Scholar
  38. 38.
    Palussiere J, Berge J, Gangi A, Cotten A, Pasco A, Bertagnoli R, Jaksche H, Carpeggiani P, Deramond H. Clinical results of an open prospective study of a Bis-GMA composite in percutaneous vertebral augmentation. Eur Spine J. 2005;14:982–91.CrossRefGoogle Scholar
  39. 39.
    Nicholson JW, Abiden F. Changes in compressive strength on ageing in glass polyalkenoate (glass-ionomer) cements prepared from acrylic/maleic acid copolymers. Biomaterials. 1997;18:59–62.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • A. W. Wren
    • 1
  • J. P. Hansen
    • 1
  • S. Hayakawa
    • 2
  • M. R. Towler
    • 3
    • 4
  1. 1.Inamori School of Engineering, Alfred UniversityAlfredUSA
  2. 2.Biomaterials LaboratoryGraduate School of Natural Science and Technology, Okayama UniversityOkayamaJapan
  3. 3.Department of Biomedical EngineeringUniversity of MalayaKuala LumpurMalaysia
  4. 4.Department of Mechanical and Industrial EngineeringRyerson UniversityTorontoCanada

Personalised recommendations