Skip to main content
Log in

Controlling the kinetic chain length of the crosslinks in photo-polymerized biodegradable networks

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Biodegradable polymer networks were prepared by photo-initiated radical polymerization of methacrylate functionalized poly(d,l-lactide) oligomers. The kinetic chains formed in this radical polymerization are the multifunctional crosslinks of the networks. These chains are carbon–carbon chains that remain after degradation. If their molecular weight is too high these poly(methacrylic acid) chains can not be excreted by the kidneys. The effect of the photo-initiator concentration and the addition of 2-mercaptoethanol as a chain transfer agent on the molecular weight of the kinetic chains was investigated. It was found that both increasing the initiator concentration and adding 2-mercaptoethanol decrease the kinetic chain length. However, the effect of adding 2-mercaptoethanol was much larger. Some network properties such as the glass transition temperature and the swelling ratio in acetone are affected when the kinetic chain length is decreased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Melchels FPW, Feijen J, Grijpma DW. A review on stereolithography and its applications in biomedical engineering. Biomaterials. 2010;31:6121–30.

    Article  CAS  Google Scholar 

  2. Bryant SJ, Anseth KS. Hydrogel properties influence ECM production by chondrocytes photoencapsulated in poly(ethylene glycol) hydrogels. J Biomed Mater Res. 2002;59:63–71.

    Article  CAS  Google Scholar 

  3. Davis K. Controlled release from crosslinked degradable networks. Crit Rev Ther Drug Carr Syst. 2002;19:385–423.

    Article  CAS  Google Scholar 

  4. Ifkovits JL, Burdick JA. Review: photopolymerizable and degradable biomaterials for tissue engineering applications. Tissue Eng. 2007;13:2369–85.

    Article  CAS  Google Scholar 

  5. Grijpma DW, Hou Q, Feijen J. Preparation of biodegradable networks by photo-crosslinking lactide, ε-caprolactone and trimethylene carbonate-based oligomers functionalized with fumaric acid monoethyl ester. Biomaterials. 2005;26:2795–802.

    Article  CAS  Google Scholar 

  6. Brenner BM, Hostetter TH, Humes HD. Glomularpermselectivity: barrier function based on discrimination of molecular-size and charge. Am J Physiol. 1978;234:F455–60.

    CAS  Google Scholar 

  7. Yamaoka T, Tabata Y, Ikada Y. Distribution and tissue uptake of poly(ethylene glycol) with different molecular weights after intravenous administration to mice. J Pharm Sci. 1994;83:601–6.

    Article  CAS  Google Scholar 

  8. Yamaoka T, Tabata Y, Ikada Y. Comparision of body distribution of poly(vinyl alcohol) with other water-soluble polymers after intravenous administration. J Pharm Pharmacol. 1995;47:479–85.

    Article  CAS  Google Scholar 

  9. Murakami Y, Tabata Y, Ikada Y. Effect of the molecular weight of water-soluble polymers on accumulation at an inflammatory site following intravenous injection. Drug Deliv. 1996;3:231–8.

    Article  CAS  Google Scholar 

  10. Ross WM, Martens AC, Vanbekkum DW. Polymethacrylic acid: induction of lymphocytosis and tissue distribution. Cell Tissue Kinet. 1975;8:467–77.

    CAS  Google Scholar 

  11. Burdick JA, Lovestead TM, Anseth KS. Kinetic chain lengths in highly cross-linked networks formed by the photoinitiated polymerization of divinyl monomers: a gel permeation chromatography investigation. Biomacromolecules. 2003;4:149–56.

    Article  CAS  Google Scholar 

  12. Burkoth AK, Anseth KS. MALDI-TOF characterization of highly cross-linked, degradable polymer networks. Macromolecules. 1999;32:1438–44.

    Article  CAS  Google Scholar 

  13. Peters R, Litvinov VM, Steeman P, Dias AA, Mengerink Y, van Benthem R, de Koster CG, van der Wal S, Schoenmakers P. Characterisation of UV-cured acrylate networks by means of hydrolysis followed by aqueous size-exclusion combined with reversed-phase chromatography. J Chromatogr A. 2007;1156:111–23.

    Article  CAS  Google Scholar 

  14. Ghaffar A, Verschuren PG, Geenevasen JAJ, Handels T, Berard J, Plum B, Dias AA, Schoenmakers PJ, van der Wal S. Fast in vitro hydrolytic degradation of polyester urethane acrylate biomaterials: structure elucidation, separation and quantification of degradation products. J Chromatogr A. 2011;1218:449–58.

    Article  CAS  Google Scholar 

  15. Melchels FPW, Velders AH, Feijen J, Grijpma DW. Photo-cross-linked poly(dl-lactide)-based networks. Structural characterization by HR-MAS NMR spectroscopy and hydrolytic degradation behavior. Macromolecules. 2010;43:8570–9.

    Article  CAS  Google Scholar 

  16. Andrzejewska E. Photopolymerization kinetics of multifunctional monomers. Prog Polym Sci. 2001;26:605–65.

    Article  CAS  Google Scholar 

  17. Rydholm AE, Held NL, Bowman CN, Anseth KS. Gel permeation chromatography characterization of the chain length distributions in thiol-acrylate photopolymer networks. Macromolecules. 2006;39:7882–8.

    Article  CAS  Google Scholar 

  18. Odian G. Principles of polymerization. Hoboken: Wiley; 2004.

    Book  Google Scholar 

  19. Deneke SM. Current topics in cellular regulation. San Diego: Academic Press Inc; 2000.

    Google Scholar 

  20. Ellman GL. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959;82:70.

    Article  CAS  Google Scholar 

  21. Matsubara H, Hata S, Kondo Y, Ishida Y, Takigawa H, Ohtani H. Characterization of cross-linking structures in UV-cured acrylic ester resin by MALDI-MS combined with supercritical methanolysis. Anal Sci. 2006;22:1403–7.

    Article  CAS  Google Scholar 

  22. Fox TG, Loshaek S. Influence of molecular weight and degree of crosslinking on the specific volume and glass temperature of polymers I. J Polym Sci. 1955;15:371–90.

    Article  CAS  Google Scholar 

  23. Rydholm AE, Reddy SK, Anseth KS, Bowman CN. Controlling network structure in degradable thiol-acrylate biomaterials to tune mass loss behavior. Biomacromolecules. 2006;7:2827–36.

    Article  CAS  Google Scholar 

  24. Reddy SK, Anseth KS, Bowman CN. Modeling of network degradation in mixed step-chain growth polymerizations. Polymer. 2005;46:4212–22.

    Article  CAS  Google Scholar 

  25. Melchels FPW, Feijen J, Grijpma DW. A poly(d,l-lactide) resin for the preparation of tissue engineering scaffolds by stereolithography. Biomaterials. 2009;30:3801–9.

    Article  CAS  Google Scholar 

  26. Bryant SJ, Nuttelman CR, Anseth KS. Cytocompatibility of UV and visible light photoinitiating systems on cultured NIH/3T3 fibroblasts in vitro. J Biomater Sci Polym E. 2000;11:439–57.

    Article  CAS  Google Scholar 

  27. Williams CG, Malik AN, Kim TK, Manson PN, Elisseeff JH. Variable cytocompatibility of six cell lines with photoinitiators used for polymerizing hydrogels and cell encapsulation. Biomaterials. 2005;26:1211.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge Tieme Stevens for performing the MALDI-TOF MS measurements. This work was financially supported by DSM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk W. Grijpma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jansen, J., Ghaffar, A., van der Horst, T.N.S. et al. Controlling the kinetic chain length of the crosslinks in photo-polymerized biodegradable networks. J Mater Sci: Mater Med 24, 877–888 (2013). https://doi.org/10.1007/s10856-013-4873-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-013-4873-x

Keywords

Navigation