Advertisement

Improvement of dissolution behavior of poorly water soluble drugs by biodegradable polymeric submicron carriers containing sparingly methylated β-cyclodextrin

  • Dilesh J. Singhavi
  • Shagufta Khan
  • Pramod G. Yeole
Article

Abstract

The objective of this study was to develop submicron carriers of two drugs that are practically insoluble in water, i.e. meloxicam and aceclofenac, to improve their dissolution behavior. The phase solubility of the drugs was studied using different concentrations of sparingly methylated β-cyclodextrin, Kleptose® Crysmeβ (Crysmeb), in the presence and absence of 0.2 % w/v water-soluble chitosan. Drug-loaded submicron particles (SMPs) were prepared using chitosan chlorhydrate and Crysmeb by the ionotropic gelation method. The SMPs were characterized in terms of powder X-ray diffraction, Fourier transforms infrared spectroscopy, size determination, process yield, drug loading, encapsulation efficiency, surface morphology and in vitro release. The drug loading in the SMPs was enhanced in the presence of Crysmeb. The in vitro drug release was found to be enhanced with SMPs prepared using higher concentrations of Crysmeb. These results indicate that SMPs formed from chitosan chlorhydrate and Crysmeb are promising submicron carriers for enhancing the dissolution of meloxicam and aceclofenac.

Keywords

Chitosan Zeta Potential Encapsulation Efficiency Drug Loading Meloxicam 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors would like to thank SAIF (Sophisticated Analytical Instrument Facility), IIT Bombay, for the TEM analysis and Diya Labs, Mumbai, for the XRD analysis.

References

  1. 1.
    Rahman MA, Harwansh R, Mirza MA, Hussain S, Hussain A. Oral lipid based drug delivery system (LBDDS): formulation, characterization and application: a review. Curr Drug Deliv. 2011;8(4):330–45.CrossRefGoogle Scholar
  2. 2.
    Lee J. Nanoparticle formulation increases oral bioavailability of poorly soluble drugs: approaches experimental evidences and theory. Curr Nanosci. 2005;1(3):237–43.CrossRefGoogle Scholar
  3. 3.
    Torchilin VP. Structure and design of polymeric surfactant-based drug delivery systems. J Control Release. 2001;73:137–72.CrossRefGoogle Scholar
  4. 4.
    Thakral S, Madan AK. Urea inclusion compounds of enalapril maleate for the improvement of pharmaceutical characteristics. J Pharm Pharmacol. 2007;59(11):1501–7.CrossRefGoogle Scholar
  5. 5.
    Saraf SA, Tripathi GK, Pandey M, Yadav P, Saraf SK. Development of meloxicam formulation utilizing ternary complexation for solubility enhancement. Pak J Pharm Sci. 2011;24(4):533–8.Google Scholar
  6. 6.
    Noyes A, Whitney W. The rate of solution of solid substances in their own solutions. J Am Chem Soc. 1897;19:930–4.CrossRefGoogle Scholar
  7. 7.
    Dutta PK, Tripathi S, Mehrotra GK, Dutta J. Perspectives for chitosan based antimicrobial films in food applications. Food Chem. 2009;114(4):1173–82.CrossRefGoogle Scholar
  8. 8.
    Berger J, Reist M, Mayer JM, Felt O, Gurny R. Structure and interactions in chitosan hydrogels formed by complexation or aggregation for biomedical applications. Eur J Pharm Biopharm. 2004;57(1):35–52.CrossRefGoogle Scholar
  9. 9.
    Bonferoni MC, Sandri G, Rossi S, Ferrari F, Caramella C. Chitosan and its salts for mucosal and transmucosal delivery. Expert Opin Drug Deliv. 2009;6(9):923–39.CrossRefGoogle Scholar
  10. 10.
    Aiedeh KM, Khatib HA, Taha MO, Al-Zoubi N. Application of novel chitosan derivatives in dissolution enhancement of a poorly water soluble drug. Pharmazie. 2006;61(4):306–11.Google Scholar
  11. 11.
    Kim DG, Jeong YI, Choi C, Ro SH. Retinol-encapsulated low molecular water soluble chitosan nanoparticles. Int J Pharm. 2006;319:130–8.CrossRefGoogle Scholar
  12. 12.
    Chen Y, Zhang YM, Liu Y. Multidimensional nanoarchitectures based on cyclodextrins. Chem Commun. 2010;46(31):5622–33.CrossRefGoogle Scholar
  13. 13.
    Kim H, Kim HW, Jung S. Aqueous solubility enhancement of some flavones by complexation with cyclodextrins. Bull Korean Chem Soc. 2008;29(3):590–4.CrossRefGoogle Scholar
  14. 14.
    Ribeiro A, Figueiras A, Santos D, Veiga F. Preparation and solid-state characterization of inclusion complexes formed between miconazole and methyl-β-cyclodextrin. AAPS PharmSciTech. 2008;9(4):1102–9.CrossRefGoogle Scholar
  15. 15.
    Bettinetti G, Melani F, Mura P, Monnanni R, Giordano F. Carbon-13 nuclear magnetic resonance study of naproxen interaction with cyclodextrins in solution. J Pharm Sci. 1991;80(12):1162–70.CrossRefGoogle Scholar
  16. 16.
    Salem LB, Bosquillon C, Dailey LA, Delattre L, Martin GP, Evrard B. Sparing methylation of β-cyclodextrin mitigates cytotoxicity and permeability induction in respiratory epithelial cell layers in vitro. J Control Release. 2009;136:110–6.CrossRefGoogle Scholar
  17. 17.
    Higuchi T, Connors KA. Phase solubility techniques. Adv Anal Chem Instrum. 1965;4:117–22.Google Scholar
  18. 18.
    Calvo P, Remunan-Lopez C, Vila-Jato JL, Alonso MJ. Novel hydrophilic chitosan polyethylene oxide nanoparticles as protein carriers. J Appl Polym Sci. 1998;63:125–32.CrossRefGoogle Scholar
  19. 19.
    Maestrelli F, Garcia-Fuentes M, Mura P. Alonso MJ.A new drug nanocarrier consisting of chitosan and hydoxypropylcyclodextrin. Eur J Pharm Biopharm. 2006;63:79–86.CrossRefGoogle Scholar
  20. 20.
    Janes KA, Fresneau MP, Marazuela A, Fabra A, Alonso MJ. Chitosan nanoparticles as delivery systems for doxorubicin. J Control Release. 2001;73(2–3):255–67.CrossRefGoogle Scholar
  21. 21.
    Elgindyl N, Elkhodairy K, Molokhia A, Elzoghbyl A. Biopolymeric nanoparticles for oral protein delivery: design and in vitro evaluation. J Nanomed Nanotechnol. 2011;2:110.Google Scholar
  22. 22.
    Trapani A, Sitterberg J, Bakowsky U, Kissel T. The potential of glycol chitosan nanoparticles as carrier for low water soluble drugs. Int J Pharm. 2009;375:97–106.CrossRefGoogle Scholar
  23. 23.
    Colombo P, Bettini R, Santi P, Peppas NA. Swellable matrices for controlled drug delivery: gel-layer behaviour, mechanisms and optimal performance. Pharm Sci Technol Today. 2000;3:198–204.CrossRefGoogle Scholar
  24. 24.
    Peppas NA. Release of bioactive agents from swellable polymers: theory and experiments. In: Anderson JM, Kim SW, editors. Recent advances in drug delivery systems. New York: Plenum; 1984. p. 279–89.CrossRefGoogle Scholar
  25. 25.
    Ozdemir N, Ordu S, Ozkan Y. Studies of floating dosage forms of furosemide: in vitro and in vivo evaluations of bilayer tablet formulations. Drug Dev Ind Pharm. 2000;26:857–66.CrossRefGoogle Scholar
  26. 26.
    Brun H, Paul M, Razzouq N, Binhas M, Gibaud S, Astier A. Cyclodextrin inclusion complexes of the central analgesic drug nefopam. Drug Dev Ind Pharm. 2006;32(10):1123–34.CrossRefGoogle Scholar
  27. 27.
    Mura P, Corti G, Maestrelli F, Cirri M. The influence of chitosan on cyclodextrin complexing and solubilizing abilities towards drugs. J Incl Phenom Macrocycl Chem. 2007;59:307–13.CrossRefGoogle Scholar
  28. 28.
    Zhang Y, Zhuo RX. Synthesis and drug release behavior of poly (trimethylene carbonate)-poly (ethylene glycol)-poly (trimethylene carbonate) nanoparticles. Biomaterials. 2005;26(14):2089–94.CrossRefGoogle Scholar
  29. 29.
    Hasanovic A, Zehl M, Reznicek G, Valenta C. Chitosan-tripolyphosphate nanoparticles as a possible skin drug delivery system for aciclovir with enhanced stability. J Pharm Pharmacol. 2009;61:1609–16.CrossRefGoogle Scholar
  30. 30.
    Swarnkar NK, Jain V, Dubey V, Mishra D, Jain NK. Enhanced oromucosal delivery of progesterone via hexasomes. Pharm Res. 2007;24(1–2):2223–30.CrossRefGoogle Scholar
  31. 31.
    Luengo J, Weiss B, Schneider M, Ehlers A, Stracke F, Konig K, Kosta KH, Lehr CM, Schaefer UF. Influence of nanoencapsulation on human skin transport of flufenamic acid. Skin Pharmacol Physiol. 2006;19:190–7.CrossRefGoogle Scholar
  32. 32.
    Vila A, Sanchez A, Evora C, Soriano I. Vila Jato JL, Alonso MJ. PEG-PLA nanoparticles as carriers for nasal vaccine delivery. J Aerosol Med. 2004;17(2):174–85.CrossRefGoogle Scholar
  33. 33.
    Xu Y, Du Y. Effect of molecular structure of chitosan on protein delivery properties of chitosan nanoparticles. Int J Pharm. 2003;250(1):215–26.CrossRefGoogle Scholar
  34. 34.
    Singh G, Dwivedi H, Saraf SK, Saraf SA. Niosomal delivery of isoniazid: development and characterization. Trop J Pharm Res. 2011;10(2):203–10.CrossRefGoogle Scholar
  35. 35.
    Chopra S, Patil GV, Motwani SK. Release modulating hydrophilic matrix systems of losartan potassium: optimisation of formulation using statistical experimental design. Eur J Pharm Biopharm. 2007;66:73–82.CrossRefGoogle Scholar
  36. 36.
    Pham AT, Lee PI. Probing the mechanism of drug release from hydroxypropyl methylcellulose matrices. Pharm Res. 1994;11:1379–85.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Dilesh J. Singhavi
    • 1
  • Shagufta Khan
    • 1
  • Pramod G. Yeole
    • 1
  1. 1.Institute of Pharmaceutical Education and ResearchWardhaIndia

Personalised recommendations