Long-term biocompatibility evaluation of 0.5 % zinc containing hydroxyapatite in rabbits

  • Rodrigo F. B. Resende
  • Gustavo V. O. Fernandes
  • Sílvia R. A. Santos
  • Alexandre M. Rossi
  • Inayá Lima
  • José M. Granjeiro
  • Mônica D. Calasans-Maia


This study investigates the long-term biocompatibility of 0.5 % zinc-containing hydroxyapatite compared with hydroxyapatite. Spheres (425 < ∅ < 550) of both materials were produced by extrusion of ceramic slurry in calcium chloride and characterized by FTIR, XRD, XRF and SEM. Fifteen White New Zealand rabbits were submitted to general anesthesia, and an perforation (2 mm), was made in each tibia, one for zinc-containing hydroxyapatite sphere implantation and one for hydroxyapatite sphere implantation. After 26, 52 and 78 weeks, the animals were euthanized, and the fragment containing the biomaterial was harvested. A 30–50 μm section was obtained for histological analysis in bright field and polarized light. SEM images revealed similar morphologies between the tested biomaterials. Histological analysis showed that there was no difference between the test groups. The morphometric analysis, however, indicates that there was a greater absorption. The materials are biocompatible, promote osteogenesis and that the zinc-containing hydroxyapatite microspheres were absorbed more quickly.


Apatite Hydroxyapatite Energy Dispersive Spectroscopy Sodium Alginate Meloxicam 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge the financial support of FAPERJ, FINEP, DECIT-MS and CNPq. In addition to the research partners LNLS, COPPE, INMETRO and CBPF.


  1. 1.
    Hing KA, Wilson LF, Buckland T. Comparative performance of three ceramic bone graft substitutes. Spine J. 2007;7:475–90.CrossRefGoogle Scholar
  2. 2.
    Torrent-Burgues J, Rodriguez-Clemente R. Hydroxyapatite precipitation in a semibatch process. Cryst Res Technol. 2001;36:1075–82.CrossRefGoogle Scholar
  3. 3.
    Webster TJ, Ergun C, Doremus RH, Bizios R. Hydroxyapatite with substituted magnesium, zinc, cadmium, and yttrium II: mechanisms of osteoblast adhesion. J Biomed Mater Res A. 2002;59:312–7.CrossRefGoogle Scholar
  4. 4.
    Webster TJ, Massa-Schluter EA, Smith JL, Slamovich EB. Osteoblast response to hydroxyapatite doped with divalent and trivalent cations. Biomaterials. 2004;25:2111–21.CrossRefGoogle Scholar
  5. 5.
    Matsunaga K, Murata H, Mizoguchi T, Nakahira A. Mechanism of incorporation of zinc into hydroxyapatite. Acta Biomater. 2009;6:2289–93.CrossRefGoogle Scholar
  6. 6.
    Salgueiro MJ, Zubillaga M, Lysionek A, Sarabia MI, Caro R, De Paoli T, Hager A, Weill R, Boccio J. Zinc status and immune system relationship: a review. Biol Trace Elem Res. 2000;76:193–205.CrossRefGoogle Scholar
  7. 7.
    Ito A, Ojima K, Naito H, Ichinose N, Tateisci T. Preparation, solubility, and cytocompatibility of zinc-releasing calcium phosphate ceramics. J Biomed Mater Res. 2000;50:178–83.CrossRefGoogle Scholar
  8. 8.
    Ito A, Kawamura H, Otsuka M, Ikeuchi M, Ohgushi H, Ishikawa K, Onuma K, Kanzaki N, Sogo Y, Ichinose N. Zinc-releasing calcium phosphate for stimulating bone formation. Mater Sci Eng, C. 2002;22:21–5.CrossRefGoogle Scholar
  9. 9.
    Ito A, Otsuka M, Kawamura H, Ikeuchi M, Ohgushi H, Sogo Y, Ichinose N. Zinc-containing tricalcium phosphate and related materials for promoting bone formation. Curr Appl Phys. 2005;5:402–6.CrossRefGoogle Scholar
  10. 10.
    Moonga BS, Dempster DW. Zinc is a potent inhibitor of osteoclastic bone resorption in vitro. J Bone Miner Res. 1995;10:453–7.CrossRefGoogle Scholar
  11. 11.
    Landi E, Logroscino G, Proietti L, Tampieri A, Sandri M, Sprio S. Biomimetic Mg-substituted hydroxyapatite: from synthesis to in vivo behavior. J Mater Sci-Mater M. 2008;19:239–47.CrossRefGoogle Scholar
  12. 12.
    Storrie H, Stupp SI. Cellular response to zinc-containing organoapatite: An in vitro study of proliferation, alkaline phosphatase activity and biomineralization. Biomaterials. 2005;26:5492–9.CrossRefGoogle Scholar
  13. 13.
    Fernandes GVO, Calasans-Maia MD, Mitri FF, Bernardo VG, Rossi A, Almeida GDS, Granjeiro JM. Histomorphometric Analysis of Bone Repair in Critical Size Defect in Rats Calvaria Treated with Hydroxyapatite and Zinc-Containing Hydroxyapatite 5%. Key Eng Mater. 2009;396–398:15–8.CrossRefGoogle Scholar
  14. 14.
    Conz MB, Granjeiro JM, Soares Gde A. Hydroxyapatite crystallinity does not affect the repair of critical size bone defects. J Appl Oral Sci. 2011;19:337–42.CrossRefGoogle Scholar
  15. 15.
    Cestari TM, Granjeiro JM, de Assis GF, Garlet GP, Taga R. Bone repair and augmentation using block of sintered bovine-derived anorganic bone graft in cranial bone defect model. Clin Oral Implants Res. 2009;20:340–50.CrossRefGoogle Scholar
  16. 16.
    Accorsi-Mendonça T, Conz MB, Barros TC, de Sena LA. Soares Gde A, Granjeiro JM. Physicochemical characterization of two deproteinized bovine xenografts. Braz Oral Res. 2008;22:5–10.CrossRefGoogle Scholar
  17. 17.
    Barrere F, Van Blitterswijk CA, Groot KD. Bone regeneration: molecular and cellular interactions with calcium phosphate ceramics. Int J Nanomed. 2006;1:317–32.Google Scholar
  18. 18.
    de Lima IR, Alves GG, Soriano CA, Campaneli AP, Gasparoto TH, Ramos ES Jr, de Sena LÁ, Rossi AM, Granjeiro JM. Understanding the impact of divalent cation substitution on hydroxyapatite: an in vitro multiparametric study on biocompatibility. J Biomed Mater Res A. 2011;98:351–8.Google Scholar
  19. 19.
    de Souza CA, Colombo AP, Souto RM, Silva-Boghossian CM, Granjeiro JM, Alves GG, Rossi AM, Rocha-Leão MH. Adsorption of chlorhexidine on synthetic hydroxyapatite and in vitro biological activity. Colloids Surf B Biointerfaces. 2011;87:310–8.CrossRefGoogle Scholar
  20. 20.
    Bazin D, Carpentier X, Traxer O, Thiaudiere D, Somogvi A, Reguer S. Very first tests on soleil regarding the Zn environment in pathological calcifications made of apatite determined by X-ray absorption spectroscopy. J Synchrotron Radiat. 2008;15:506–9.CrossRefGoogle Scholar
  21. 21.
    Tang Y, Chappell HF, Dove MT, Reeder RJ, Lee YJ. Zinc incorporation into hydroxylapatite. Biomaterials. 2009;30:2864–72.CrossRefGoogle Scholar
  22. 22.
    Costa AM, Soares GA, Calixto R, Rossi AM. Preparation and properties of zinc containing biphasic calcium phosphate bioceramics. Key Eng Mater. 2004;254–256:119–22.CrossRefGoogle Scholar
  23. 23.
    Kawamura H, Ito A, Muramatsu T, Miyakawa S, Ochiai N, Tateishi T. Long term implantation of zinc-releasing calcium phosphate ceramics in rabbit femora. J Biomed Mater Res A. 2003;65:468–74.CrossRefGoogle Scholar
  24. 24.
    Calasans-Maia MD, Rossi AM, Dias EP, Santos SRA, Ascoli FO, Granjeiro JM. Stimulatory effect on osseous repair of zinc-substituted hydroxyapatite: Histological study in rabbit’s tibia. Key Eng Mater. 2008;361–363:1269–72.CrossRefGoogle Scholar
  25. 25.
    Kawachi EY, Bertran CA, Reis R, Alves OL. Biocerâmicas: tendências e perspectivas de uma área interdisciplinar. Quim Nova. 2000;23:518–22.CrossRefGoogle Scholar
  26. 26.
    Riminucci M, Bianco P. Building bone tissue: matrices and scaffolds in physiology and biotechnology. Braz J Med Biol Res. 2003;36:1027–36.CrossRefGoogle Scholar
  27. 27.
    Li X, Sogo Y, Ito A, Mutsuzaki H, Ochial N, Kobayashi T, Nakamura S, Yamashita K, Legeros RZ. The optimum zinc content in set calcium phosphate cement for promoting bone formation in vivo. Mater Sci Eng, C. 2009;29:969–75.CrossRefGoogle Scholar
  28. 28.
    Pradeesh TS, Sunny MC, Varma HK, Ramesh P. Preparation of microstructured hydroxyapatite microspheres using oil in water emulsions. B Mater Sci. 2005;28:383–90.CrossRefGoogle Scholar
  29. 29.
    Ribeiro CC, Barrias CC, Barbosa MA. Calcium phosphate-alginate microspheres as enzyme delivery matrices. Biomaterials. 2004;25:4363–73.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Rodrigo F. B. Resende
    • 1
    • 6
  • Gustavo V. O. Fernandes
    • 1
  • Sílvia R. A. Santos
    • 2
  • Alexandre M. Rossi
    • 2
  • Inayá Lima
    • 3
  • José M. Granjeiro
    • 1
    • 4
    • 5
  • Mônica D. Calasans-Maia
    • 6
  1. 1.Cell and Molecular Biology Department, Biology InstituteFluminense Federal UniversityNiteroi, Rio de JaneiroBrazil
  2. 2.Biomaterials Laboratory-LABIOMATBrazilian Physics of Center ResearchesRio de JaneiroBrazil
  3. 3.Nuclear Instrumentation LaboratoryNuclear Engineering Program, COPPE/UFRJRio de JaneiroBrazil
  4. 4.Bioengineering DepartmentNational Institute of Metrology, Quality and TechnologyDuque de Caxias, Rio de JaneiroBrazil
  5. 5.Clinical Research UnitFluminense Federal UniversityNiteroi, Rio de JaneiroBrazil
  6. 6.Oral Surgery Department—Dentistry SchoolFluminense Federal UniversityNiteroi, Rio de JaneiroBrazil

Personalised recommendations