Influence of albumin on the electrochemical behaviour of Zr in phosphate buffered saline solutions

  • Lu-Ning Wang
  • Xian-Qiu Huang
  • Alyssa Shinbine
  • Jing-Li Luo


The corrosion behaviour of Zr in phosphate buffered saline (PBS) solutions with various concentrations (0–4 g L−1) of albumin was studied by electrochemical techniques and surface analysis. Addition of albumin to PBS solutions moved the open circuit potential (OCP) to less nobler direction. OCP, polarization resistance and impedance increased and the corrosion current decreased over immersion duration. At early stages of immersion, the resistance was increased with the concentration of albumin because of the high adsorption kinetics of albumin on metal. After the long term immersion, the resistance in PBS without albumin was higher than PBS with albumin owing to the anodic dissolution effect of albumin on metal. According to the analysis of effective capacitances, a normal distribution of time-constants was proposed to estimate the surface film on Zr. A corrosion mechanism of Zr in PBS with different albumin was proposed based on electrochemical analysis.


Electrochemical Impedance Spectroscopy Corrosion Behaviour Passive Film Immersion Time Open Circuit Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by Natural Sciences and Engineering Research Council Canada (NSERC). Xianqiu Huang thanks for financial support from State Administration of Foreign Experts Affairs, the P.R. of China and Wuhan Iron & Steel (Group) Corp.


  1. 1.
    Williams DF. Biocompatibility of clinical implant materials. Boca Raton: CRC Press; 1982.Google Scholar
  2. 2.
    Heimke G, Soltesz U, Lee AJC. Clinical implant materials (advances in biomaterials). London: Elsevier Science Ltd; 1990.Google Scholar
  3. 3.
    Williams RL, Brown SA, Merritt K. Electrochemical studies on the influence of proteins on the corrosion of implant alloys. Biomaterials. 1988;9:181–6.CrossRefGoogle Scholar
  4. 4.
    Winters GL, Nutt MJ. Stainless steels for medical and surgical applications. Pittsburgh: ASTM International; 2003.CrossRefGoogle Scholar
  5. 5.
    Brown SA, Lemons JE. Medical applications of titanium and its alloys: the material and biological issues. Pittsburgh: ASTM International; 1996.CrossRefGoogle Scholar
  6. 6.
    Brunette DM. Titanium in medicine: material science, surface science, engineering, biological responses, and medical applications. Berlin: Springer; 2001.Google Scholar
  7. 7.
    Leyens C, Peters M. Titanium and titanium alloys: fundamentals and applications. Weinheim: Wiley-VCH; 2003.CrossRefGoogle Scholar
  8. 8.
    Disegi JA, Kennedy RL, Pilliar R. Cobalt-base alloys for biomedical applications. Pittsburgh: ASTM International; 1999.CrossRefGoogle Scholar
  9. 9.
    Helsen JA, Jürgen Breme H. Metals as biomaterials. Weinheim: Wiley-VCH; 1998.Google Scholar
  10. 10.
    Hildebrand HF, Champy M. Biocompatibility of Co–Cr–Ni alloys. Berlin: Plenum Press; 1988.Google Scholar
  11. 11.
    Young CS, Durham JC. Industrial applications of titanium and zirconium. Pittsburgh: ASTM International; 1986.CrossRefGoogle Scholar
  12. 12.
    Zardiackas LD, Kraay MJ, Freese HL. Titanium, niobium, zirconium, and tantalum for medical and surgical applications. Pittsburgh: ASTM International; 2006.CrossRefGoogle Scholar
  13. 13.
    Gehrke P, Dhom G, Brunner J, Wolf D, Degidi M, Piattelli A. Zirconium implant abutments: fracture strength and influence of cyclic loading on retaining-screw loosening. Quintessence Int. 2006;37:19–26.Google Scholar
  14. 14.
    Ride DR. Magnetic susceptibility of the elements and inorganic compounds. CRC handbook of chemistry and physics (87th ed.), vol. 4, Boca Raton: CRC Press; 2006. p. 142.Google Scholar
  15. 15.
    Suyalatu NN, Oya K, Tanaka Y, Kondo R, Doi H, Tsutsumi Y, Hanawa T. Microstructure and magnetic susceptibility of as-cast Zr–Mo alloys. Acta Biomater. 2010;6:1033–38.Google Scholar
  16. 16.
    Chiapasco M, Casentini P, Zaniboni M, Corsi E, Anello T. Titanium–zirconium alloy narrow-diameter implants (Straumann Roxolid®) for the rehabilitation of horizontally deficient edentulous ridges: prospective study on 18 consecutive patients. Clin Oral Implants Res. 2011. doi: 10.1111/j.1600-0501.2011.02296.x.Google Scholar
  17. 17.
    Wen CE, Yamada Y, Hodgson PD. Fabrication of novel TiZr alloy foams for biomedical applications. Mater Sci Eng C. 2006;26:1439–44.CrossRefGoogle Scholar
  18. 18.
    Okazakia Y, Raoa S, Ito Y, Tateishic T. Corrosion resistance, mechanical properties, corrosion fatigue strength and cytocompatibility of new Ti alloys without Al and V. Biomaterials. 1998;1998(19):1197–215.CrossRefGoogle Scholar
  19. 19.
    Sista S, Wen CE, Hodgson PD, Pande G. The influence of surface energy of titanium zirconium alloy on osteoblast cell functions in vitro. J Biomed Mater Res A. 2011;97A:27–36.CrossRefGoogle Scholar
  20. 20.
    Zhang YM, Chai F, Hornez J-C, Li CL, Zhao YM, Traisnel M, Hildebrand HF. The corrosion and biological behaviour of titanium alloys in the presence of human lymphoid cells and MC3T3-E1 osteoblasts. Biomed Mater. 2009;4:015004.CrossRefGoogle Scholar
  21. 21.
    Olsson COA, Landolt D. Passive films on stainless steels-chemistry, structure and growth. Electrochim Acta. 2003;48:1093–104.CrossRefGoogle Scholar
  22. 22.
    Landolt D. Corrosion and surface chemistry of metals. Lausanne: CRC Press; 2007.CrossRefGoogle Scholar
  23. 23.
    Clark GCF, Williams DF. The effects of proteins on metallic corrosion. J Biomed Mater Res. 1982;16:125–34.CrossRefGoogle Scholar
  24. 24.
    Tang YC, Katsuma S, Fujimoto S, Hiromoto S. Electrochemical study of Type 304 and 316L stainless steels in simulated body fluids and cell cultures. Acta Biomater. 2006;2:709–15.CrossRefGoogle Scholar
  25. 25.
    Contu F, Elsener B, Böhni H. Corrosion behaviour of CoCrMo implant alloy during fretting in bovine serum. Corros. Sci. 2005;47:1863–75.CrossRefGoogle Scholar
  26. 26.
    Takemoto S, Hattori M, Yoshinari M, Kawada E, Oda Y. Corrosion behavior and surface characterization of titanium in solution containing fluoride and albumin. Biomaterials. 2005;26:829–37.CrossRefGoogle Scholar
  27. 27.
    Milosev I, Strehblow HH. The behavior of stainless steels in physiological solution containing complexing agent studied by X-ray photoelectron spectroscopy. J Biomed Mater Res. 2000;52:404–12.CrossRefGoogle Scholar
  28. 28.
    Burstein GT, Liu C. Nucleation of corrosion pits in Ringer’s solution containing bovine serum. Corros Sci. 2007;49:4296–306.CrossRefGoogle Scholar
  29. 29.
    Huang HH. Effect of fluoride and albumin concentration on the corrosion behavior of Ti–6Al–4V alloy. Biomaterials. 2003;24:275–82.CrossRefGoogle Scholar
  30. 30.
    Muñoz AI, Mischler S. Interactive effects of albumin and phosphate ions on the corrosion of CoCrMo implant alloy. J Electrochem Soc. 2007;154:C562–70.CrossRefGoogle Scholar
  31. 31.
    Valero VC, Igual MA. Electrochemical characterisation of biomedical alloys for surgical implants in simulated body fluids. Corros Sci. 2008;50:1954–61.Google Scholar
  32. 32.
    Valero VC, Olmo JA, Igual MA. Adsorption of bovine serum albumin on CoCrMo surface: effect of temperature and protein concentration. Colloids Surf B. 2010;80:1–11.Google Scholar
  33. 33.
    Wang W, Mohammadi F, Alfantazi A. Corrosion behaviour of niobium in phosphate buffered saline solutions with different concentrations of bovine serum albumin. Corros Sci. 2012;57:11–21.CrossRefGoogle Scholar
  34. 34.
    Rouhana R, Budge SM, Macdonald SM, Roscoe SG. Electrochemical studies of the interfacial behaviour of α-lactalbumin and bovine serum albumin. Food Res Int. 1997;30:13–20.CrossRefGoogle Scholar
  35. 35.
    Oliveira NTC, Biaggio SR, Rocha-Filho RC, Bocchi N. Electrochemical studies on zirconium and its biocompatible alloys Ti-50Zr at.% and Zr-2.5Nb wt.% in simulated physiologic media. J Biomed Mater Res. A. 2005;74:397–407.Google Scholar
  36. 36.
    Berger S, Faltenbacher J, Bauer S, Schmuki P. Enhanced self-ordering of anodic ZrO2 nanotubes in inorganic and organic electrolytes using two-step anodization. Phys Stat Sol (RRL). 2008;2:102–04.Google Scholar
  37. 37.
    Walker P, Tarn WH, editors. CRC handbook of metal etchants. Boca Raton: CRC Press; 2000.Google Scholar
  38. 38.
    Dulbecco R, Vogt M. Plaque formation and isolation of pure lines with poliomyelitis viruses. J Exp Med. 1954;99:167–82.CrossRefGoogle Scholar
  39. 39.
    Upadhyaya D, Panchal MA, Dubey RS, Srivastava VK. Corrosion of alloys used in dentistry: a review. Mater Sci Eng A. 2006;432:1–11.CrossRefGoogle Scholar
  40. 40.
    Kumar S, Narayanan TSNS, Saravana KS. Influence of fluoride ion on the electrochemical behaviour of β-Ti alloy for dental implant application. Corros Sci. 2010;52:1721–7.CrossRefGoogle Scholar
  41. 41.
    Contu F, Elsener B, Bohni H. Serum effect on the electrochemical behaviour of titanium, Ti6Al4V and Ti6Al7Nb alloys in sulphuric acid and sodium hydroxide. Corros. Sci. 2004;46:2241–54.CrossRefGoogle Scholar
  42. 42.
    Contu F, Elsener B, Bohni H. A study of the potentials achieved during mechanical abrasion and the repassivaton rate of titanium and Ti6Al4V in inorganic buffer solutions and bovine serum. Electrochim Acta. 2004;50:33–41.CrossRefGoogle Scholar
  43. 43.
    Shukla AK, Balasubramaniam R, Bhargava S. Properties of passive film formed on CP titanium, Ti–6Al–4V and Ti–13.4Al–29Nb alloys in simulated human body conditions. Intermetallics. 2005;13:631–7.CrossRefGoogle Scholar
  44. 44.
    Rezaei-Tavirani M, Moghaddamnia SH, Ranjbar B, Amani M, Marashi S-A. Conformational study of human serum albumin in pre-denaturation temperatures by differential scanning calorimetry, circular dichroism and UV spectroscopy. J Biochem Mol Biol. 2006;39:530–6.CrossRefGoogle Scholar
  45. 45.
    Gabriele R. Corrosion rate monitoring by the linear polarization method. Corros Sci. 1993;34:2031–44.CrossRefGoogle Scholar
  46. 46.
    Karimi S, Nickchi T, Alfantazi A. Effects of bovine serum albumin on the corrosion behaviour of AISI 316L, Co–28Cr–6Mo, and Ti–6Al–4V alloys in phosphate buffered saline solutions. Corros Sci. 2011;53:3262–72.CrossRefGoogle Scholar
  47. 47.
    Frateur I, Lartundo-Rojas L, Méthivier C, Galtayries A, Marcus P. Influence of bovine serum albumin in sulphuric acid aqueous solution on the corrosion and the passivation of an iron–chromium alloy. Electrochim. Acta. 2006;51:1550–7.CrossRefGoogle Scholar
  48. 48.
    Cheng X, Roscoe SG. Corrosion behavior of titanium in the presence of calcium phosphate and serum proteins. Biomaterials. 2005;26:7350–6.CrossRefGoogle Scholar
  49. 49.
    Omanovic S, Roscoe SG. Electrochemical studies of the adsorption behaviour of bovine serum albumin on stainless steel. Langmuir. 1999;15:8315–21.CrossRefGoogle Scholar
  50. 50.
    Jackson DR, Omanovic S, Roscoe SG. Electrochemical studies of the adsorption behavior of serum proteins on titanium. Langmuir. 2000;16:5449–57.CrossRefGoogle Scholar
  51. 51.
    Yau YH, Yang K, Zhang B. Pitting corrosion resistance of La added 316L stainless steel in simulated body fluids. Mater Lett. 2007;61:1154–7.CrossRefGoogle Scholar
  52. 52.
    Hirschorn B, Orazem ME, Tribollet B, Vivier V, Frateur I, Musiani M. Determination of effective capacitance and film thickness from constant-phase-element parameters. Electrochim Acta. 2010;55:6218–27.CrossRefGoogle Scholar
  53. 53.
    Brug GJ, van den Eeden ALG, Sluyters-Rehbach M, Sluyters JH. The analysis of electrode impedances complicated by the presence of a constant phase element. J Electroanal Chem Interface. 1984;176:275–95.CrossRefGoogle Scholar
  54. 54.
    Hsu CH, Mansfeld F. Concerning the conversion of the constant phase element parameter Y0 into a capacitance. Corrosion. 2001;57:747–8.CrossRefGoogle Scholar
  55. 55.
    Zhu J, Li TL, Pan B, Zhou L, Liu ZG. Enhanced dielectric properties of ZrO2 thin films prepared in nitrogen ambient by pulsed laser deposition. J Phys D: Appl Phys. 2003;36:389–93.CrossRefGoogle Scholar
  56. 56.
    Wallinder D, Pan J, Leygraf C, Delblanc-Bauer A. EIS and XPS study of surface modification of 316LVM stainless steel after passivation. Corros Sci. 1998;41:275–89.CrossRefGoogle Scholar
  57. 57.
    Deligianni DD, Katsala N, Ladas S, Sotiropoulou D, Amedee J. Missirlis YF Effect of surface roughness of the titanium alloy Ti–6Al–4V on human bone marrow cell response and on protein adsorption. Biomaterials. 2001;22:1241–51.CrossRefGoogle Scholar
  58. 58.
    Park JW, Kim YJ, Jang JH, Kwon TG, Bae YC, Suh JY. Effects of phosphoric acid treatment of titanium surfaces on surface properties, osteoblast response and removal of torque forces. Acta Biomater. 2010;6:1661–70.CrossRefGoogle Scholar
  59. 59.
    Kang BS, Sul YT, Oh SJ, Lee HJ, Albrektsson T. XPS, AES and SEM analysis of recent dental implants. Acta Biomater. 2009;5:2222–9.CrossRefGoogle Scholar
  60. 60.
    Tsutsumi Y, Nishimura D, Doi H, Nomura N, Hanawa T. Cathodic alkaline treatment of zirconium to give the ability to form calcium phosphate. Acta Biomater. 2010;6:4161–6.Google Scholar
  61. 61.
    Wang YM, Li YS, Wong PC, Mitchell KAR. XPS studies of the stability and reactivity of thin films of oxidized zirconium. Appl Surf Sci. 1993;72:237–44.CrossRefGoogle Scholar
  62. 62.
    Morant C, Sanz JM, Galán L, Soriano L, Rueda F. An XPS study of the interaction of oxygen with zirconium. Surf Sci. 1989;218:331–45.CrossRefGoogle Scholar
  63. 63.
    Pradier CM, Costa D, Rubio C, Compère C, Marcus P. Role of salts on BSA adsorption on stainless steel in aqueous solutions. I. FT-IRRAS and XPS characterization. Surf Interface Anal. 2002;34:50–4.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Lu-Ning Wang
    • 1
  • Xian-Qiu Huang
    • 2
  • Alyssa Shinbine
    • 1
  • Jing-Li Luo
    • 1
  1. 1.Department of Chemical and Materials EngineeringUniversity of AlbertaEdmontonCanada
  2. 2.R&D CenterWuhan Iron & Steel (Group) CorpWuhanChina

Personalised recommendations