Chitosan/bovine serum albumin co-micropatterns on functionalized titanium surfaces and their effects on osteoblasts

  • Dan Li
  • Xiong Lu
  • Hong Lin
  • Fuzeng Ren
  • Yang Leng


Chitosan (CS)/bovine serum albumin (BSA) micropatterns were prepared on functionalized Ti surfaces by micro-transfer molding (μ-TM). μ-TM realized the spatially controlled immobilization of cells and offered a new way of studying the interaction between micropatterns and cells. Two kinds of micropatterns were produced: (1) microgrooves representing a discontinuously grooved co-micropattern, with the rectangular CS region separated by BSA walls; (2) microcylinders representing a continuously interconnected co-micropattern, with the net-like CS region separated by BSA cylinders. A comparison of cell behaviors on the two types of micropatterns indicated that the shape rather than the size had a dominant effect on cell proliferation. The micropattern size in the same range of cell diameters favored cell proliferation. However, cell differentiation was more sensitive to the size rather than to the shape of the micropatterns. In conclusion, cell behavior can be regulated by micropatterns integrating different materials.


Bovine Serum Albumin Solution Bovine Serum Albumin Molecule Alamar Blue Assay PDMS Stamp Silicon Master 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This project was financially supported by the National Basic Research Program of China (973 Program, 2012CB933602), NSFC (31070851), Program for New Century Excellent Talents in University (NCET-10-0704), Sichuan Youth Science-Technology Foundation (2011JQ0010), Fundamental Research Funds for the Central Universities (SWJTU11CX150).


  1. 1.
    Liu XY, Chu PK, Ding CX. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mat Sci Eng R. 2004;47:49–121.CrossRefGoogle Scholar
  2. 2.
    Lu X, Leng Y, Zhang X, Xu J, Qin L, Chan C. Comparative study of osteoconduction on micromachined and alkali-treated titanium alloy surfaces in vitro and in vivo. Biomaterials. 2005;26:1793–801.CrossRefGoogle Scholar
  3. 3.
    Dettin M, Herath T, Gambaretto R, Iucci G, Battocchio C, Bagno A, et al. Assessment of novel chemical strategies for covalent attachment of adhesive peptides to rough titanium surfaces: XPS analysis and biological evaluation. J Biomed Mater Res A. 2009;91A:463–79.CrossRefGoogle Scholar
  4. 4.
    Secchi AG, Grigoriou V, Shapiro IM, Cavalcanti-Adam EA, Composto RJ, Ducheyne P, et al. RGDS peptides immobilized on titanium alloy stimulate bone cell attachment, differentiation and confer resistance to apoptosis. J Biomed Mater Res A. 2007;83A:577–84.CrossRefGoogle Scholar
  5. 5.
    Iucci G, Dettin M, Battocchio C, Gambaretto R, Bello CD, Polzonetti G. Novel immobilizations of an adhesion peptide on the TiO2 surface: an XPS investigation. Mat Sci Eng C-Bio S. 2007;27:1201–6.CrossRefGoogle Scholar
  6. 6.
    Maekawa K, Yoshida Y, Mine A, Fujisawa T, Meerbeek BV, Suzuki K, et al. Chemical interaction of polyphosphoric acid with titanium and its effect on human bone marrow derived mesenchymal stem cell behavior. J Biomed Mater Res A. 2007;82A:195–200.CrossRefGoogle Scholar
  7. 7.
    Maekawa K, Yoshida Y, Mine A, Meerbeek BV, Suzuki K, Kuboki T. Effect of polyphosphoric acid pre-treatment of titanium on attachment, proliferation, and differentiation of osteoblast-like cells (MC3T3-E1). Clin Oral Implants Res. 2008;19:320–5.CrossRefGoogle Scholar
  8. 8.
    Rammelt S, Schulze E, Bernhardt R, Hanisch U, Scharnweber D, Worch H, et al. Coating of titanium implants with type-I collagen. J Orthop Res. 2004;22:1025–34.CrossRefGoogle Scholar
  9. 9.
    Yang Y, Cavin R, Ong JL. Protein adsorption on titanium surfaces and their effect on osteoblast attachment. J Biomed Mater Res A. 2003;67A:344–9.CrossRefGoogle Scholar
  10. 10.
    Liu H, Du Y, Yang J, Zhu H. Structural characterization and antimicrobial activity of chitosan/betaine derivative complex. Carbohydr Polym. 2004;55:291–7.CrossRefGoogle Scholar
  11. 11.
    Arpornmaeklong P, Pripatnanont P, Suwatwirote N. Properties of chitosan-collagen sponges and osteogenic differentiation of rat-bone-marrow stromal cells. Int J Oral Max Surg. 2008;37:357–66.CrossRefGoogle Scholar
  12. 12.
    Bumgardner JD, Wiser R, Gerard PD, Bergin P, Chestnutt B, Marini M, et al. Chitosan: potential use as a bioactive coating for orthopaedic and craniofacial/dental implants. J Biomater Sci-Polym E. 2003;14:423–38.CrossRefGoogle Scholar
  13. 13.
    Bumgardner JD, Chesnutt BM, Yuan Y, Yang Y, Appleford M, Oh S, et al. The integration of chitosan-coated titanium in bone: an in vivo study in rabbits. Implant Dent. 2007;16:66–79.CrossRefGoogle Scholar
  14. 14.
    Kaji H, Kanada M, Oyamatsu D, Matsue T, Nishizawa M. Microelectrochemical approach to induce local cell adhesion and growth on substrates. Langmuir. 2003;20:16–9.CrossRefGoogle Scholar
  15. 15.
    Kaji H, Tsukidate K, Hashimoto M, Matsue T, Nishizawa M. Patterning the surface cytophobicity of an albumin-physisorbed substrate by electrochemical Means. Langmuir. 2005;21:6966–9.CrossRefGoogle Scholar
  16. 16.
    den Braber ET, Jansen HV, de Boer MJ, Croes HJE, Elwenspoek M, Ginsel LA, et al. Scanning electron microscopic, transmission electron microscopic, and confocal laser scanning microscopic observation of fibroblasts cultured on microgrooved surfaces of bulk titanium substrata. J Biomed Mater Res A. 1998;40:425–33.CrossRefGoogle Scholar
  17. 17.
    Qu J, Chehroudi B, Brunette D. The use of micromachined surfaces to investigate the cell behavioural factors essential to osseointegration. Oral Dis. 1996;2:102–15.CrossRefGoogle Scholar
  18. 18.
    Hamilton DW, Wong KS, Brunette DM. Microfabricated discontinuous-edge Surface topographies influence osteoblast adhesion, migration, cytoskeletal organization, and proliferation and enhance matrix and mineral deposition in vitro. Calcif Tissue Int. 2006;78:314–25.CrossRefGoogle Scholar
  19. 19.
    Zinger O, Zhao G, Schwartz Z, Simpson J, Wieland M, Landolt D, et al. Differential regulation of osteoblasts by substrate microstructural features. Biomaterials. 2005;26:1837–47.CrossRefGoogle Scholar
  20. 20.
    Mata A, Boehm C, Fleischman AJ, Muschler G, Roy S. Growth of connective tissue progenitor cells on microtextured polydimethylsiloxane surfaces. J Biomed Mater Res A. 2002;62:499–506.CrossRefGoogle Scholar
  21. 21.
    Ito Y. Micropattern immobilization of polysaccharide. J Inorg Biochem. 2000;79:77–81.CrossRefGoogle Scholar
  22. 22.
    Heydari M, Hasuda H, Sakuragi M, Yoshida Y, Suzuki K, Ito Y. Modification of the titan surface with photoreactive gelatin to regulate cell attachment. J Biomed Mater Res A. 2007;83A:906–14.CrossRefGoogle Scholar
  23. 23.
    Gopalan SM, Flaim C, Bhatia SN, Hoshijima M, Knoell R, Chien KR, et al. Anisotropic stretch-induced hypertrophy in neonatal ventricular myocytes micropatterned on deformable elastomers. Biotechnol Bioeng. 2003;81:578–87.CrossRefGoogle Scholar
  24. 24.
    Hsu SH, Su CH, Chiu IM. A novel approach to align adult neural stem cells on micropatterned conduits for peripheral nerve regeneration: a feasibility study. Artif Organs. 2009;33:26–35.CrossRefGoogle Scholar
  25. 25.
    Hsu SH, Chen CY, Lu PS, Lai CS, Chen CJ. Oriented Schwann cell growth on microgrooved surfaces. Biotechnol Bioeng. 2005;92:579–88.CrossRefGoogle Scholar
  26. 26.
    Moroni L, Lee LP. Micropatterned hot-embossed polymeric surfaces influence cell proliferation and alignment. J Biomed Mater Res A. 2009;88A:644–53.CrossRefGoogle Scholar
  27. 27.
    Karp JM, Yeo Y, Geng W, Cannizarro C, Yan K, Kohane DS, et al. A photolithographic method to create cellular micropatterns. Biomaterials. 2006;27:4755–64.CrossRefGoogle Scholar
  28. 28.
    Yamazoe H, Okuyama T, Suzuki H, Fukuda J. Fabrication of patterned cell co-cultures on albumin-based substrate: applications for microfluidic devices. Acta Biomater. 2010;6:526–33.CrossRefGoogle Scholar
  29. 29.
    Lu X, Leng Y. Comparison of the osteoblast and myoblast behavior on hydroxyapatite microgrooves. J Biomed Mater Res B Appl Biomater. 2009;90B:438–45.Google Scholar
  30. 30.
    Lu X, Leng Y. Quantitative analysis of osteoblast behavior on microgrooved hydroxyapatite and titanium substrata. J Biomed Mater Res A. 2003;66A:677–87.CrossRefGoogle Scholar
  31. 31.
    Healy KE, Thomas CH, Rezania A, Kim JE, McKeown PJ, Lom B, et al. Kinetics of bone cell organization and mineralization on materials with patterned surface chemistry. Biomaterials. 1996;17:195–208.CrossRefGoogle Scholar
  32. 32.
    Kam L, Shain W, Turner JN, Bizios R. Correlation of astroglial cell function on micro-patterned surfaces with specific geometric parameters. Biomaterials. 1999;20:2343–50.CrossRefGoogle Scholar
  33. 33.
    Singhvi R, Kumar A, Lopez G, Stephanopoulos G, Wang D, Whitesides G, et al. Engineering cell shape and function. Science. 1994;264:696–8.CrossRefGoogle Scholar
  34. 34.
    Clark P, Connolly P, Moores G. Cell guidance by micropatterned adhesiveness in vitro. J Cell Sci. 1992;103:287–92.Google Scholar
  35. 35.
    Feng J, Gao C, Wang B, Shen J. Co-patterning chitosan and bovine serum albumin on an aldehyde-enriched glass substrate by microcontact printing. Thin Solid Films. 2004;460:286–90.CrossRefGoogle Scholar
  36. 36.
    Xie J, Lu X, Zhang H, Zhou X, Qu S, Feng B, et al. Preparation and characterization of the CS/BSA composite micropatterns on silicon surfaces. Chem J Chin Univ. 2009;30:2319–25.Google Scholar
  37. 37.
    Xia Y, Whitesides GM. Soft lithogr Annu Rev Mater Sci. 1998;28:153–84.CrossRefGoogle Scholar
  38. 38.
    Kang HJ, Blum FD. Structure and dynamics of amino functional silanes adsorbed on silica surfaces. J Phys Chem A. 2002;95:9391–6.Google Scholar
  39. 39.
    Kokubo T, Miyaji F, Kim HM, Nakamura T. Spontaneous formation of bone like apatite layer on chemically treated titanium metals. J Am Ceram Soc. 1996;79:1127–9.CrossRefGoogle Scholar
  40. 40.
    Kim HM, Miyaji F, Kokubo T, Nakamura T. Preparation of bioactive Ti and its alloys via simple chemical surface treatment. J Biomed Mater Res. 1996;32:409–17.CrossRefGoogle Scholar
  41. 41.
    Bumgardner JD, Wiser R, Patrick DG, Bergin P, Chestnutt B, Marini M, et al. Chitosan: potential use as a bioactive coating for orthopaedic and craniofacial/dental implants. J Biomat Sci Polym E. 2003;14:423–38.CrossRefGoogle Scholar
  42. 42.
    Jiang L, Lu X, Leng Y, Qu S, Feng B, Weng J. Micropatterned TiO2 effects on calcium phosphate mineralization. Mat Sci Eng C Bio S. 2009;29:2355–9.CrossRefGoogle Scholar
  43. 43.
    Sabokbar A, Millett PJ, Myer B, Rushton N. A rapid, quantitative assay for measuring alkaline phosphatase activity in osteoblastic cells in vitro. Bone Mineral. 1994;27:57–67.CrossRefGoogle Scholar
  44. 44.
    Liu YR, Qu SX, Maitz MF, Tan R, Weng J. The effect of the major components of Salvia Miltiorrhiza Bunge on bone marrow cells. J Ethnopharmacol. 2007;111:573–83.CrossRefGoogle Scholar
  45. 45.
    McCafferty E, Wightman JP, Cromer TF. Surface properties of hydroxyl groups in the air-formed oxide film on titanium. J Electrochem Soc. 1999;146:2849–52.CrossRefGoogle Scholar
  46. 46.
    McCafferty E, Wightman JP. Determination of the concentration of surface hydroxyl groups on metal oxide films by a quantitative XPS method. Surf Interface Anal. 1998;26:549–64.CrossRefGoogle Scholar
  47. 47.
    Szili EJ, Kumar S, Smart RSC, Voelcker NH. Generation of a stable surface concentration of amino groups on silica coated onto titanium substrates by the plasma enhanced chemical vapour deposition method. Appl Surf Sci. 2009;255:6846–50.CrossRefGoogle Scholar
  48. 48.
    Porté-Durrieu MC, Labrugère C, Villars F, Lefebvre F, Dutoya S, Guette A, et al. Development of RGD peptides grafted onto silica surfaces: XPS characterization and human endothelial cell interactions. J Biomed Mater Res A. 1999;46:368–75.CrossRefGoogle Scholar
  49. 49.
    Laffon C, Flank A, Lagarde P, Laridjani M, Hagege R, Olry P, et al. Study of Nicalon-based ceramic fibres and powders by EXAFS spectrometry, X-ray diffractometry and some additional methods. J Mater Sci. 1989;24:1503–12.CrossRefGoogle Scholar
  50. 50.
    Walt DR, Agayn VI. The chemistry of enzyme and protein immobilization with glutaraldehyde. Trends Anal Chem. 1994;13:425–30.CrossRefGoogle Scholar
  51. 51.
    Minier M, Salmain M, Yacoubi N, Barbes L, Méthivier C, Zanna S, et al. Covalent immobilization of lysozyme on stainless steel. interface spectroscopic characterization and measurement of enzymatic activity. Langmuir. 2005;21:5957–65.CrossRefGoogle Scholar
  52. 52.
    Pashutski A, Folman M. Low temperature XPS studies of NO and N2O adsorption on Al(100). Surf Sci. 1989;216:395–408.CrossRefGoogle Scholar
  53. 53.
    Martin HJ, Schulz KH, Bumgardner JD, Walters KB. XPS study on the use of 3-aminopropyltriethoxysilane to bond chitosan to a titanium surface. Langmuir. 2007;23:6645–51.CrossRefGoogle Scholar
  54. 54.
    Longo L, Vasapollo G, Guascito M, Malitesta C. New insights from X-ray photoelectron spectroscopy into the chemistry of covalent enzyme immobilization, with glutamate dehydrogenase (GDH) on silicon dioxide as an example. Anal Bioanal Chem. 2006;385:146–52.CrossRefGoogle Scholar
  55. 55.
    Moulder JF, Stickle WF, Sobel PE, Bomben KD. Handbook of X-ray photoelectron spectroscopy. Ramsey: Perkin-Elmer Corporation; 1992.Google Scholar
  56. 56.
    Martin HJ, Schulz KH, Bumgardner JD, Schneider JA. Enhanced bonding of chitosan to implant quality titanium via four treatment combinations. Thin Solid Films. 2008;516:6277–86.CrossRefGoogle Scholar
  57. 57.
    Kim J, Seidler P, Fill C, Wan LS. Investigations of the effect of curing conditions on the structure and stability of amino-functionalized organic films on silicon substrates by Fourier transform infrared spectroscopy, ellipsometry, and fluorescence microscopy. Surf Sci. 2008;602:3323–30.CrossRefGoogle Scholar
  58. 58.
    Yang G, Wu J, Xu G, Yang L. Comparative study of properties of immobilized lipase onto glutaraldehyde-activated amino-silica gel via different methods. Colloid Surf B. 2010;78:351–6.CrossRefGoogle Scholar
  59. 59.
    Monteiro OA, Airoldi C. Some studies of crosslinking chitosan-glutaraldehyde interaction in a homogeneous system. Int J Biol Macromol. 1999;26:119–28.CrossRefGoogle Scholar
  60. 60.
    Nelson CM, Chen CS. Cell-cell signaling by direct contact increases cell proliferation via a PI3K-dependent signal. FEBS Lett. 2002;514:238–42.CrossRefGoogle Scholar
  61. 61.
    Hasenbein ME, Andersen TT, Bizios R. Micropatterned surfaces modified with select peptides promote exclusive interactions with osteoblasts. Biomaterials. 2002;23:3937–42.CrossRefGoogle Scholar
  62. 62.
    Chen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE. Micropatterned surfaces for control of cell shape, position, and function. Biotechnol Prog. 1998;14:356–63.CrossRefGoogle Scholar
  63. 63.
    Walboomers XF, Croes HJE, Ginsel LA, Jansen JA. Growth behavior of fibroblasts on microgrooved polystyrene. Biomaterials. 1998;19:1861–8.CrossRefGoogle Scholar
  64. 64.
    Thomas CH, Collier JH, Sfeir CS, Healy KE. Engineering gene expression and protein synthesis by modulation of nuclear shape. Proc Natl Acad Sci USA. 2002;99:1972–7.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Dan Li
    • 1
  • Xiong Lu
    • 1
  • Hong Lin
    • 1
  • Fuzeng Ren
    • 2
  • Yang Leng
    • 2
  1. 1.Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and EngineeringSouthwest Jiaotong UniversityChengduChina
  2. 2.Department of Mechanical EngineeringHong Kong University of Science and TechnologyHong KongChina

Personalised recommendations